纯铜/铜合金高反射材料粉末床激光熔融技术进展
Progress in laser powder bed fusion of pure copper/copper alloy highly reflective metal materials
查看参考文献59篇
文摘
|
纯铜/铜合金具有优异的导热、导电性能,是重要的工业材料。以粉末床激光熔融为代表的激光增材制造技术具有优良的设计自由度及成形精度,是增材制造的主流发展方向。纯铜/铜合金的粉末床激光熔融与传统加工制造技术相比,前者能够更好地发挥铜优异的性能,在电子电气、汽车、航空航天等导热/导电高需求领域具有广阔的应用前景。本文综述了以纯铜/铜合金为代表的激光高反射材料的粉末床激光熔融的研究现状、面临的重要问题以及相应的解决对策分析。在此基础上,结合本课题组在纯铜/铜合金粉末床激光熔融过程的经验,指出运用蓝光、绿光等短波长激光器进行纯铜/铜合金等高反射材料的粉末床激光熔融是未来的研究热点与发展方向。 |
其他语种文摘
|
Pure copper/copper alloy has excellent thermal and electrical conductivity,which is an important industrial material.Laser powder bed fusion,which represents the laser additive manufacturing technology,has excellent design freedom and forming accuracy,and is the mainstream development direction of additive manufacturing. Compared with traditional processing and manufacturing technology,the laser powder bed fusion of pure copper/copper alloy can give better play to the excellent performance of copper,and has broad application prospects in the fields of high thermal conductivity/electrical conductivity such as electrical and electronic,automotive,aerospace and other fields.The current research status of laser powder bed fusion of laser high-reflective materials represented by pure copper/copper alloys,the important problems they face,and the analysis of corresponding solutions were reviewed in this paper.On this basis,combined with the team's experience in the laser powder bed fusion process of pure copper/copper alloy,it was pointed out that the use of blue,green and other short-wavelength lasers for the powder bed laser fusion of pure copper/copper alloy and other highly reflective materials is a future study hot spots and development directions. |
来源
|
材料工程
,2022,50(6):1-11 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000938
|
关键词
|
粉末床激光熔融
;
高反射材料
;
激光吸收率
;
纯铜/铜合金
|
地址
|
华南理工大学机械与汽车工程学院, 广州
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺;电子技术、通信技术 |
基金
|
广东省重点领域研发计划项目
|
文献收藏号
|
CSCD:7261502
|
参考文献 共
59
共3页
|
1.
堵永国. 电接触材料的热导率.
电工合金,1996(2):15-21
|
CSCD被引
4
次
|
|
|
|
2.
Silbernagel C. Electrical resistivity of pure copper processed by medium-powered laser powder bed fusion additive manufacturing for use in electromagnetic applications.
Additive Manufacturing,2019,29:100831
|
CSCD被引
9
次
|
|
|
|
3.
Robinson J. Stable formation of powder bed laser fused 99.9%silver.
Materials Today Communications,2020,24:101195
|
CSCD被引
2
次
|
|
|
|
4.
Selvamani V. Hierarchical micro/mesoporous copper structure with enhanced antimicrobial property via laser surface texturing.
Advanced Materials Interfaces,2020,7(7):1901890
|
CSCD被引
4
次
|
|
|
|
5.
Mostafaei A. Binder jet 3Dprinting-process parameters,materials,properties,and challenges.
Progress in Materials Science,2020,119:100707
|
CSCD被引
2
次
|
|
|
|
6.
Lee J Y. Fundamentals and applications of 3D printing for novel materials.
Applied Materials Today,2017,7:120-133
|
CSCD被引
27
次
|
|
|
|
7.
Singh R. Powder bed fusion process in additive manufacturing:an overview.
Materials Today: Proceedings,2020,26(2):3058-3070
|
CSCD被引
2
次
|
|
|
|
8.
Buchbinder D. High power selective laser melting(HP LPBF)of aluminum parts.
Physics Procedia,2011,12:271-278
|
CSCD被引
56
次
|
|
|
|
9.
Oliveira J P. Processing parameters in laser powder bed fusion metal additive manufacturing.
Materials & Design,2020,193:108762
|
CSCD被引
19
次
|
|
|
|
10.
杨永强. 光纤激光器在金属增材制造中的应用进展及展望.
中国激光,2020,47(5):203-215
|
CSCD被引
4
次
|
|
|
|
11.
Debroy T. Additive manufacturing of metallic components-process,structure and properties.
Progress in Materials Science,2018,92(10):112-224
|
CSCD被引
360
次
|
|
|
|
12.
Aboulkhair N T. 3D printing of aluminum alloys:additive manufacturing of aluminum alloys using selective laser melting.
Progress in Materials Science,2019,106:100578
|
CSCD被引
86
次
|
|
|
|
13.
Guo N. Additive manufacturing: technology, applications and research needs.
Frontiers of Mechanical Engineering,2013,8(3):215-243
|
CSCD被引
58
次
|
|
|
|
14.
Giannatsis J. Additive fabrication technologies applied to medicine and health care:a review.
The International Journal of Advanced Manufacturing Technology,2009,40(1/2):116-127
|
CSCD被引
20
次
|
|
|
|
15.
Dawood A. 3D printing in dentistry.
British Dental Journal,2015,219(11):521-529
|
CSCD被引
24
次
|
|
|
|
16.
Yan X. Microstructure and mechanical properties of pure copper manufactured by selective laser melting.
Materials Science and Engineering:A,2020,789(3):139615
|
CSCD被引
13
次
|
|
|
|
17.
Singh G. Rapid manufacturing of copper components using 3Dprinting and ultrasonic assisted pressureless sintering:experimental investigations and process optimization.
Journal of Manufacturing Processes,2019,43:253-269
|
CSCD被引
2
次
|
|
|
|
18.
顾瑞楠. 金、银、铜等典型高反射率材料的激光增材制造.
中国科学:物理学力学天文学,2020,50(3):44-57
|
CSCD被引
5
次
|
|
|
|
19.
Ledford C. Characteristics and processing of hydrogen-treated copper powders for EB-PBF additive manufacturing.
Applied Sciences,2019,9(19):3993
|
CSCD被引
5
次
|
|
|
|
20.
Singer F. Additively manufactured copper components and composite structures for thermal management applications.
2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm),2017:174-183
|
CSCD被引
3
次
|
|
|
|
|