脉冲调制激光雷达水下成像系统
Underwater imaging system of pulse modulated lidar
查看参考文献14篇
文摘
|
针对水下目标探测应用场景,给出了相应的532 nm波长激光雷达系统参数,结合条纹管激光雷达和载波调制激光雷达的优点,设计研制了一套水下三维成像增程激光雷达原理样机。相对于常见的微波调制激光产生高频脉冲的方案,该原理样机采取调Q技术压缩激光脉冲,再结合F-P腔的特性产生高频激光脉冲,具有峰值功率高和输出能量高的优点。实验结果表明,该原理样机在清水环境中成像距离优于20 m,能够捕捉到13 m处直径9 mm的目标细节;在浊水环境中的信号处理增程能力达到81.4%,相对距离分辨误差为0.01 m。所获得的实验结果为进一步提升水下激光雷达的成像距离和分辨率进而发展水下成像装备奠定了基础。 |
其他语种文摘
|
According to the application of underwater target detection, the corresponding 532 nm wavelength lidar system parameters were given. Combining the advantages of streak tube lidar and subcarrier modulated lidar, a prototype of underwater 3D imaging extended range lidar was designed. Compared with the common scheme of microwave modulated laser to generate high frequency pulse, the prototype adopted Q-switch technology to compress laser pulse, and then combined the characteristics of F-P cavity to generate high frequency laser pulse, which had the advantages of high peak power and high output energy. The experimental results show that the imaging distance of the prototype in clear water environment is better than 20 m, and it can capture the target details with a diameter of 9 mm at 13 m. In the turbid water environment, the range-extended capability of signal processing is 81.4%, and the range resolution error is 0.01 m. The experimental results provide a foundation for further improving the imaging range and resolution of underwater lidar and developing underwater imaging equipment. |
来源
|
红外与激光工程
,2022,51(3):20210204 【核心库】
|
DOI
|
10.3788/IRLA20210204
|
关键词
|
高分辨率
;
水下成像
;
激光雷达
;
增程
|
地址
|
1.
国防科技大学电子科学学院, 湖南, 长沙, 410073
2.
中国科学院西安光学精密机械研究所, 中国科学院超快诊断技术重点实验室, 陕西, 西安, 710119
3.
中国电子科技集团公司第二十七研究所, 河南, 郑州, 450047
4.
西北工业大学光学影像分析与学习中心, 陕西, 西安, 710072
5.
国防科技大学气象海洋学院, 湖南, 长沙, 410073
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2276 |
学科
|
电子技术、通信技术 |
基金
|
某装备预研项目
;
国防科学技术大学基金
|
文献收藏号
|
CSCD:7247607
|
参考文献 共
14
共1页
|
1.
Ma Jian. Compact dual-wavelength blue-green laser for airborne ocean detection lidar.
Applied Optics,2020,59(10):C87-C91
|
CSCD被引
6
次
|
|
|
|
2.
Chen Wenge. Survey of airborne oceanic lidar.
Laser Technology. (in Chinese),1998,22(3):147-152
|
CSCD被引
2
次
|
|
|
|
3.
Mullen L J. Hybrid LIDAR-radar: Seeing through the scatter.
IEEE Microwave Magazine,2000,1(3):42-48
|
CSCD被引
13
次
|
|
|
|
4.
Mullen L J. Modulated laser line scanner for enhanced underwater imaging.
Proceedings of SPIE. 3761,1999:2-9
|
CSCD被引
1
次
|
|
|
|
5.
Pellen F. Radio frequency modulation on optical carrier for target detection enhancement in seawater.
Proceedings of SPIE. 4488,2002:1122-1130
|
CSCD被引
1
次
|
|
|
|
6.
Shen Zhenmin. Underwater target detection of chaotic pulse laser radar.
Infrared and Laser Engineering. (in Chinese),2019,48(4):0406004
|
CSCD被引
2
次
|
|
|
|
7.
Gleckler A D. Multiple-slit streak tube imaging lidar (MS-STIL) applications.
Proceedings of SPIE. 4035,2000:266-278
|
CSCD被引
4
次
|
|
|
|
8.
Gu Li. Photocathode detection system of X-ray streak camera for laser fusion.
Infrared and Laser Engineering. (in Chinese),2018,47(8):0817002
|
CSCD被引
1
次
|
|
|
|
9.
Zhu Jun'an. Design and manufacture of a day and night optical low pass filter.
Optics and Precision Engineering. (in Chinese),2021,29(2):363-373
|
CSCD被引
1
次
|
|
|
|
10.
Li Minglei. Stripmap mode synthetic aperture ladar imaging under large random phase errors condition.
Chinese Optics. (in Chinese),2019,12(1):130-137
|
CSCD被引
1
次
|
|
|
|
11.
Liu Bo. Adaptive context-aware correlation filter tracking.
Chinese Optics. (in Chinese),2019,12(2):265-273
|
CSCD被引
2
次
|
|
|
|
12.
Qin Kecheng(Translated).
Introduction to Fourier Optics. 3rd ed. (in Chinese),2006:49
|
CSCD被引
1
次
|
|
|
|
13.
Gelbart A. Flash lidar based on multiple-slit streak tube imaging lidar.
Proceedings of SPIE. 4723,2002:9-18
|
CSCD被引
2
次
|
|
|
|
14.
Li K. Super-resolution radar imaging based on experimental OAM beams.
Applied Physics Letters,2017,110(16):164102
|
CSCD被引
24
次
|
|
|
|
|