基于胶囊网络的工业互联网入侵检测方法
Intrusion Detection Method Based on Capsule Network for Industrial Internet
查看参考文献22篇
文摘
|
工业互联网在快速发展的同时,面临着严峻的信息安全风险.针对传统入侵检测方法准确性低、难以适应工业互联网海量不平衡数据的问题,提出一种基于胶囊网络的工业互联网入侵检测方法.首先,基于残差块构建特征提取模块,引入全局平均池化层得到高质量的数据特征;其次,使用动态路由算法,通过迭代的方式对入侵数据特征进行聚类,在胶囊网络模块完成数据分类.基于Modbus/TCP协议的气体管道传感器网络数据集的测试结果表明,该方法可以在隐性提取特征的同时改善检测准确率.与所列算法对比,本文方法提高了检测指标,对不平衡数据有更强的鲁棒性,更接近工业互联网入侵检测技术需求. |
其他语种文摘
|
Industrial internet is rapidly growing up while encountering severe information security risks at the same time. Aiming at the problem that traditional intrusion detection methods are low in accuracy and difficult to adapt to the massive unbalanced data of industrial Internet, an industrial Internet intrusion detection method based on capsule network is proposed. Firstly, a module involved feature extraction module is constructed based on the residual block, and a global average pooling layer is introduced to get high-quality data features. Secondly, the dynamic routing algorithm is introduced. The intrusion data features are clustered through iteration, and classification are completed in the module based on capsule network. The test results out of the data set from sensor network with Modbus/TCP protocol used in gas pipeline show that the method can improve the accuracy rate while extracting features implicitly. Compared to the listed algorithms, the proposed method in this paper performs better in test indexes with stronger robustness to unbalanced data and is closer to meet the needs of intrusion detection from industrial Internet. |
来源
|
电子学报
,2022,50(6):1457-1465 【核心库】
|
DOI
|
10.12263/DZXB.20201275
|
关键词
|
工业互联网
;
入侵检测
;
胶囊网络
;
残差网络
|
地址
|
重庆邮电大学自动化学院/工业互联网学院, 重庆, 400065
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
教育部-中国移动科研基金
|
文献收藏号
|
CSCD:7240136
|
参考文献 共
22
共2页
|
1.
Dalenogare L S. The expected contribution of Industry 4.0 technologies for industrial performance.
International Journal of Production Economics,2018,204:383-394
|
CSCD被引
4
次
|
|
|
|
2.
Alladi T. Industrial control systems: Cyberattack trends and countermeasures.
Computer Communications,2020,155:1-8
|
CSCD被引
5
次
|
|
|
|
3.
Markovic-Petrovic J D. A fuzzy AHP approach for security risk assessment in SCADA networks.
Advances in Electrical and Computer Engineering,2019,19(3):69-74
|
CSCD被引
3
次
|
|
|
|
4.
Zolanvari M. Machine learning-based network vulnerability analysis of industrial Internet of Things.
IEEE Internet of Things Journal,2019,6(4):6822-6834
|
CSCD被引
5
次
|
|
|
|
5.
Tong D. Accelerating decision tree based traffic classification on FPGA and multicore platforms.
IEEE Transactions on Parallel and Distributed Systems,2017,28(11):3046-3059
|
CSCD被引
7
次
|
|
|
|
6.
Alves T. Embedding encryption and machine learning intrusion prevention systems on programmable logic controllers.
IEEE Embedded Systems Letters,2018,10(3):99-102
|
CSCD被引
2
次
|
|
|
|
7.
江泽涛. 基于感知哈希矩阵的最近邻入侵检测算法.
电子学报,2019,47(7):1538-1546
|
CSCD被引
2
次
|
|
|
|
8.
Potluri S. Evaluation of hybrid deep learning techniques for ensuring security in networked control systems.
2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation(ETFA),2017:1-8
|
CSCD被引
1
次
|
|
|
|
9.
王勇. 基于深度卷积神经网络的网络流量分类方法.
通信学报,2018,39(1):14-23
|
CSCD被引
30
次
|
|
|
|
10.
陈红松. 基于循环神经网络的无线网络入侵检测分类模型构建与优化研究.
电子与信息学报,2019,41(6):1427-1433
|
CSCD被引
9
次
|
|
|
|
11.
He Y B. Real-time detection of false data injection attacks in smart grid: A deep learningbased intelligent mechanism.
IEEE Transactions on Smart Grid,2017,8(5):2505-2516
|
CSCD被引
52
次
|
|
|
|
12.
Sabour S. Dynamic routing between capsules.
Neural Information Processing Systems. NIPS Proceeding,2017:3856-3866
|
CSCD被引
2
次
|
|
|
|
13.
Deng F. Hyperspectral image classification with capsule network using limited training samples.
Sensors,2018,18(9):3153
|
CSCD被引
12
次
|
|
|
|
14.
He K M. Deep residual learning for image recognition.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778
|
CSCD被引
634
次
|
|
|
|
15.
赵耀霞. 基于卷积神经网络的复杂构件内部零件装配正确性识别.
电子学报,2018,46(8):1983-1988
|
CSCD被引
6
次
|
|
|
|
16.
Dong X Y. More is less: A more complicated network with less inference complexity.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:5840-5848
|
CSCD被引
1
次
|
|
|
|
17.
Li J Q. Industrial Internet: A survey on the enabling technologies, applications, and challenges.
IEEE Communications Surveys & Tutorials,2017,19(3):1504-1526
|
CSCD被引
31
次
|
|
|
|
18.
魏琴芳. 基于稀疏化LSSVM的物联网轻量级入侵检测方法.
重庆邮电大学学报(自然科学版),2021,33(3):475-481
|
CSCD被引
1
次
|
|
|
|
19.
Mantere M. Network traffic features for anomaly detection in specific industrial control system network.
Future Internet,2013,5(4):460-473
|
CSCD被引
2
次
|
|
|
|
20.
Morris T. Industrial control system traffic data sets for intrusion detection research.
International Conference on Critical Infrastructure Protection,2014:65-78
|
CSCD被引
8
次
|
|
|
|
|