帮助 关于我们

返回检索结果

基于多智能体深度强化学习的分布式协同干扰功率分配算法
Allocation Algorithm of Distributed Cooperative Jamming Power Based on Multi-Agent Deep Reinforcement Learning

查看参考文献31篇

文摘 针对战场通信对抗协同干扰中的干扰功率分配难题,本文基于多智能体深度强化学习设计了一种分布式协同干扰功率分配算法.具体地,将通信干扰功率分配问题构建为完全协作的多智能体任务,采用集中式训练、分布式决策的方式缓解多智能体系统环境非平稳、决策维度高的问题,减少智能体之间的通信开销,并加入最大策略熵准则控制各智能体的探索效率,以最大化累积干扰奖励和最大化干扰策略熵为优化目标,加速各智能体间协同策略的学习.仿真结果表明,所提出的分布式算法能有效解决高维协同干扰功率分配难题,相比于已有的集中式分配算法具有学习速度更快、波动性更小等优点,且相同条件下干扰效率可高出集中式算法16.8%.
其他语种文摘 In order to solve the problem of jamming power allocation in battlefield cooperative communication countermeasures, this paper designs a distributed cooperative jamming power allocation method based on multi-agent deep reinforcement learning. Specifically, modeling the communication jamming power allocation as a fully cooperative multi-agent task, then the framework of centralized training and distributed decision-making is adopted to alleviate the characteristic of non-stationary environment and high dimensions in multi-agent system, reducing the communication overhead between agents as well, and introducing the maximum policy entropy criterion to control the exploration efficiency of each agent. Regarding maximizing the cumulative jamming reward and maximizing the entropy of the jamming policy as the optimization goal, then accelerates the learning of cooperative strategies. Simulation results indicate the proposed distributed method can effectively solve the high-dimensional cooperative jamming power allocation problem. Compared with the existing centralized allocation method, it has faster learning speed and less volatility, and the jamming efficiency is 16.8% higher than that of the centralized method under the same conditions.
来源 电子学报 ,2022,50(6):1319-1330 【核心库】
DOI 10.12263/DZXB.20210818
关键词 通信对抗 ; 协同功率分配 ; 多智能体深度强化学习 ; 分布式策略 ; 最大策略熵
地址

空军工程大学信息与导航学院, 陕西, 西安, 710077

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 电子技术、通信技术
文献收藏号 CSCD:7240121

参考文献 共 31 共2页

1.  王沙飞. 认知电子战体系结构与技术. 中国科学:信息科学,2018,48(12):1603-1613,1709 CSCD被引 23    
2.  Bayram S. Optimum power allocation for average power constrained jammers in the presence of non-Gaussian noise. IEEE Communications Letters,2012,16(8):1153-1156 CSCD被引 4    
3.  Xu C. Distributed subchannel allocation for interference mitigation in OFDMA femtocells: A utility-based learning approach. IEEE Transactions on Vehicular Technology,2015,64(6):2463-2475 CSCD被引 5    
4.  Gomadam K. Approaching the capacity of wireless networks through distributed interference alignment. 2008 IEEE Global Telecommunications Conference,2008:1-6 CSCD被引 3    
5.  Amuru S. Jamming bandits-A novel learning method for optimal jamming. IEEE Transactions on Wireless Communications,2016,15(4):2792-2808 CSCD被引 14    
6.  颛孙少帅. 基于正强化学习和正交分解的干扰策略选择算法. 系统工程与电子技术,2018,40(3):518-525 CSCD被引 4    
7.  Amuru S. Optimal jamming using delayed learning. 2014 IEEE Military Communications Conference,2014:1528-1533 CSCD被引 2    
8.  黄志清. 基于深度强化学习的端到端无人驾驶决策. 电子学报,2020,48(9):1711-1719 CSCD被引 14    
9.  Silver D. Mastering the game of Go with deep neural networks and tree search. Nature,2016,529(7587):484-489 CSCD被引 758    
10.  Vinyals O. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature,2019,575(7782):350-354 CSCD被引 162    
11.  陈思光. 基于深度强化学习的云边协同计算迁移研究. 电子学报,2021,49(1):157-166 CSCD被引 7    
12.  Li S. A Sample-Efficient Actor-Critic Algorithm for Recommendation Diversification. Chinese Journal of Electronics,2020,29(1):89-96 CSCD被引 5    
13.  杨启萌. 基于深度强化学习的维吾尔语人称代词指代消解. 电子学报,2020,48(6):1077-1083 CSCD被引 2    
14.  Luong N C. Applications of deep reinforcement learning in communications and networking: A survey. IEEE Communications Surveys & Tutorials,2019,21(4):3133-3174 CSCD被引 43    
15.  Zhao D. A graph convolutional network-based deep reinforcement learning approach for resource allocation in a cognitive radio network. Sensors(Basel, Switzerland),2020,20(18):5216-5239 CSCD被引 3    
16.  Wang S X. Deep reinforcement learning for dynamic multichannel access in wireless networks. IEEE Transactions on Cognitive Communications and Networking,2018,4(2):257-265 CSCD被引 6    
17.  Xu Z Y. A deep reinforcement learning based framework for power-efficient resource allocation in cloud RANs. 2017 IEEE International Conference on Communications,2017:1-6 CSCD被引 1    
18.  Guo D L. Joint optimization of handover control and power allocation based on multi-agent deep reinforcement learning. IEEE Transactions on Vehicular Technology,2020,69(11):13124-13138 CSCD被引 3    
19.  刘婷婷. 基于多智能体深度强化学习的分布式干扰协调. 通信学报,2020,41(7):38-48 CSCD被引 1    
20.  Nasir Y S. Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks. IEEE Journal on Selected Areas in Communications,2019,37(10):2239-2250 CSCD被引 25    
引证文献 4

1 赵浩钦 一种聚类辅助的智能频谱分配技术研究 西安电子科技大学学报,2023,50(6):1-12
CSCD被引 1

2 席昕 对旁瓣相消的分布式干扰优化布阵方法 系统工程与电子技术,2024,46(8):2623-2628
CSCD被引 0 次

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号