非理想观测下的多功能雷达工作状态在线切换点检测方法
Online Detection Method of Multi-Function Radar Work Mode Changepoints Non-ideal Observations
查看参考文献28篇
文摘
|
先进多功能雷达可以实现灵活的波束调度和复杂的工作状态调制,进而在雷达时间线上同时执行多个不同的任务,给电子侦察设备带来了巨大挑战.准确快速地对多功能雷达工作状态切换点进行在线检测对识别多功能雷达行为意图具有重要意义.本文在对多功能雷达层次化模型中工作状态所在“符号-脉冲”层进行调制类型级和参数级扩展表征基础上,提出了一种非理想观测下的多功能雷达工作状态在线切换点检测算法.该方法针对真实信号环境中存在的测量误差、虚假脉冲和缺失脉冲等情况进行适应性设计,通过离群点剔除处理和广义切换点检测算法处理,不仅可以实现调制参数粒度的雷达工作状态在线切换点检测,还可以给出雷达工作状态调制参数在切换点前后的准确估计.仿真实验验证了本文提出方法相较传统切换点检测方法的有效性和优越性. |
其他语种文摘
|
Multi-function radars(MFRs) have great flexibilities in beam scheduling and complex modulation of radar work modes. It can perform multiple system tasks simultaneously in the radar timeline, which brings great challenges to electronic reconnaissance devices. Online detection of multiple MFR work mode changepoints accurately and rapidly is of great importance for identifying the behavioral intentions of a multi-function radar. This paper proposes an online detection method of MFR work mode changepoints. The proposed method takes the measurement noise, spurious pulses and lost pulses in real electromagnetic environment into consideration and can realize online changepoints detection of radar working mode under the observations contaminated by these non-ideal situations. Also, this method can estimate the modulation parameters of the work modes before and after the changepoints. Experimental results validate the effectiveness and superiority of the proposed method compared with the traditional changepoint detection methods. |
来源
|
电子学报
,2022,50(6):1291-1300 【核心库】
|
DOI
|
10.12263/DZXB.20210830
|
关键词
|
多功能雷达
;
工作状态
;
切换点检测
;
虚假脉冲
;
缺失脉冲
;
测量噪声
|
地址
|
1.
北京理工大学信息与电子学院, 北京, 100081
2.
中国电子科技集团公司第二十九研究所, 四川, 成都, 610097
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金面上项目
|
文献收藏号
|
CSCD:7240118
|
参考文献 共
28
共2页
|
1.
Li Y J. Work modes recognition and boundary identification of MFR pulse sequences with a hierarchical seq2seq LSTM.
IET Radar, Sonar & Navigation,2020,14(9):1343-1353
|
CSCD被引
7
次
|
|
|
|
2.
Fang Y. Multi-function radar behavior state detection algorithm based on Bayesian criterion.
2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference(IAEAC),2019:213-217
|
CSCD被引
1
次
|
|
|
|
3.
Tartakovsky A.
Sequential Analysis: Hypothesis Testing and Changepoint Detection,2014
|
CSCD被引
4
次
|
|
|
|
4.
Poor H V.
Quickest Detection,2008
|
CSCD被引
2
次
|
|
|
|
5.
Veeravalli V V. Quickest change detection.
Academic Press Library in Signal Processing,2014:209-255
|
CSCD被引
1
次
|
|
|
|
6.
Chen Y C. Quickest line outage detection and identification.
IEEE Transactions on Power Systems,2016,31(1):749-758
|
CSCD被引
3
次
|
|
|
|
7.
Raghavan V. Quickest change detection of a Markov process across a sensor array.
IEEE Transactions on Information Theory,2010,56(4):1961-1981
|
CSCD被引
2
次
|
|
|
|
8.
Peel L. Detecting change points in the large-scale structure of evolving networks.
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,2015:2914-2920
|
CSCD被引
1
次
|
|
|
|
9.
Amorese D. Applying a change-point detection method on frequency-magnitude distributions.
Bulletin of the Seismological Society of America,2007,97(5):1742-1749
|
CSCD被引
13
次
|
|
|
|
10.
Lee K C. Online learning of probabilistic appearance manifolds for video-based recognition and tracking.
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005:852-859
|
CSCD被引
1
次
|
|
|
|
11.
Lai L F. Quickest detection in cognitive radio: A sequential change detection framework.
2008 IEEE Global Telecommunications Conference,2008:1-5
|
CSCD被引
1
次
|
|
|
|
12.
马爽. 基于幅度变化点检测的多功能雷达脉冲列解析方法.
电子学报,2013,41(7):1436-1441
|
CSCD被引
8
次
|
|
|
|
13.
Visnevski N A.
Syntactic Modeling of Multi-Function Radars,2005
|
CSCD被引
5
次
|
|
|
|
14.
Visnevski N. Syntactic modeling and signal processing of multifunction radars: A stochastic context-free grammar approach.
Proceedings of the IEEE,2007,95(5):1000-1025
|
CSCD被引
27
次
|
|
|
|
15.
Wang A. Signal interpretation of multifunction radars: Modeling and statistical signal processing with stochastic context free grammar.
IEEE Transactions on Signal Processing,2008,56(3):1106-1119
|
CSCD被引
16
次
|
|
|
|
16.
Ou J. Method for operating mode identification of multi-function radars based on predictive state representations.
IET Radar, Sonar & Navigation,2017,11(3):426-433
|
CSCD被引
8
次
|
|
|
|
17.
刘海军. 多功能雷达建模中的雷达字提取技术研究.
国防科技大学学报,2010,32(2):91-96
|
CSCD被引
15
次
|
|
|
|
18.
王勇军. 一种改进的事件驱动的MFR雷达字提取方法.
现代雷达,2019,41(3):17-20,26
|
CSCD被引
6
次
|
|
|
|
19.
代鹂鹏. 基于SCFG建模的多功能雷达状态估计算法.
空军工程大学学报(自然科学版),2014,15(3):24-28
|
CSCD被引
8
次
|
|
|
|
20.
Ou J. Novel approach for the recognition and prediction of multi-function radar behaviours based on predictive state representations.
Sensors (Basel, Switzerland),2017,17(3):632
|
CSCD被引
1
次
|
|
|
|
|