面向FPGA的布局与布线技术研究综述
Review on Technology of Placement and Routing for the FPGA
查看参考文献85篇
文摘
|
随着大规模集成电路器件复杂度与容量的不断提升,现场可编程门阵列(Field Programmable Gate Array, FPGA)以高度的并行、可定制和可重构的特性得到了广泛的关注与应用.在制约FPGA发展的众多因素中,最为关键的便是电子设计自动化(Electronic Design Automation, EDA)技术,作为FPGA EDA流程中的关键环节,布局和布线技术的研究对于FPGA的重要性不言而喻.本文综述了面向FPGA的布局和布线技术,包括基于划分的布局、基于启发式的布局、基于解析式的布局、FPGA串行布线和FPGA并行布线等技术,分析对比了不同技术方法的优缺点,在此基础上,本文还展望了未来FPGA布局和布线技术的发展趋势,将为FPGA未来健康可持续的发展提供有力支撑. |
其他语种文摘
|
With the continuous increase in the complexity and capacity of large-scale integrated circuit devices, field programmable gate array(FPGA) has received extensive attention and applications for its high degree of concurrency, customizable and reconfigurable features. Among the many factors that restrict the development of FPGA, the most critical is electronic design automation(EDA) technology. As a key link in the FPGA EDA process, the importance of placement and routing technology for FPGA is self-evident. This article reviews the technology of placement and routing for the FPGA, including partition-based placement, heuristic-based placement, analytical-based placement, FPGA serial routing and FPGA parallel routing. The advantages and disadvantages of different technologies are analyzed and compared. On this basis, the development trend of FPGA placement and routing technology in the future is also prospected, which will provide strong support for the healthy and sustainable development of FPGAs. |
来源
|
电子学报
,2022,50(5):1243-1254 【核心库】
|
DOI
|
10.12263/DZXB.20210637
|
关键词
|
现场可编程门阵列
;
电子设计自动化
;
布局
;
布线
;
并行计算
|
地址
|
1.
北京大学信息科学技术学院微纳电子学系, 北京, 100871
2.
北京微电子技术研究所, 北京, 100076
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术;自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
国家重大科技专项
|
文献收藏号
|
CSCD:7240112
|
参考文献 共
85
共5页
|
1.
Trimberger S M. Three ages of FPGAs: A retrospective on the first thirty years of FPGA technology.
Proceedings of the IEEE,2015,103(3):318-331
|
CSCD被引
4
次
|
|
|
|
2.
Trimberger S M. Three ages of FPGAs: a retrospective on the first thirty years of FPGA technology: this paper reflects on how Moore's law has driven the design of FPGAs through three epochs: the age of invention, the age of expansion, and the age of accumulation.
IEEE Solid-State Circuits Magazine,2018,10(2):16-29
|
CSCD被引
1
次
|
|
|
|
3.
Imani M. Revisiting hyperdimensional learning for FPGA and low-power architectures.
2021 IEEE International Symposium on High-Performance Computer Architecture(HPCA),2021:221-234
|
CSCD被引
1
次
|
|
|
|
4.
Zhang J X. An FPGA-based neural network overlay for ADAS supporting multi-model and multi-mode.
2021 IEEE International Symposium on Circuits and Systems(ISCAS),2021:1-5
|
CSCD被引
1
次
|
|
|
|
5.
Kan H W. Trusted edge cloud computing mechanism based on FPGA cluster.
2020 IEEE 8th International Conference on Computer Science and Network Technology(ICCSNT),2020:146-149
|
CSCD被引
1
次
|
|
|
|
6.
刘公绪. 基于FPGA的零误差大数阶乘算法的设计与实现.
电子学报,2019,47(5):1180-1184
|
CSCD被引
1
次
|
|
|
|
7.
蹇强. 一种可配置的CNN协加速器的FPGA实现方法.
电子学报,2019,47(7):1525-1531
|
CSCD被引
5
次
|
|
|
|
8.
Lin Y B. DREAMPlace: Deep learning toolkit-enabled GPU acceleration for modern VLSI placement.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2021,40(4):748-761
|
CSCD被引
2
次
|
|
|
|
9.
Luu J. VTR 7.0: next generation architecture and CAD system for FPGAs.
ACM Transactions on Reconfigurable Technology and Systems,2014,7(2):1-30
|
CSCD被引
12
次
|
|
|
|
10.
Dhar S. FPGA accelerated FPGA placement.
2019 29th International Conference on Field Programmable Logic and Applications (FPL),2019:404-410
|
CSCD被引
1
次
|
|
|
|
11.
Zapletina M A. Improving pathfinder algorithm performance for FPGA routing.
2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering(ElConRus),2021:2054-2057
|
CSCD被引
1
次
|
|
|
|
12.
王德奎. 一种利用资源协商的FPGA布局方法.
西安电子科技大学学报,2019,46(6):17-22
|
CSCD被引
1
次
|
|
|
|
13.
Khatkhate A. Recursive bisection based mixed block placement.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2005,24(5):748-761
|
CSCD被引
1
次
|
|
|
|
14.
Kim M C. SimPL: an effective placement algorithm.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2012,31(1):50-60
|
CSCD被引
2
次
|
|
|
|
15.
Maidee P. Timing-driven partitioning-based placement for island style FPGAs.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2005,24(3):395-406
|
CSCD被引
9
次
|
|
|
|
16.
Fiduccia C M. A linear-time heuristic for improving network partitions.
19th Design Automation Conference,1982:175-181
|
CSCD被引
3
次
|
|
|
|
17.
Karypis G. Parallel multilevel k-way partitioning scheme for irregular graphs.
Supercomputing Proceedings of the 1996 ACM/IEEE Conference on Supercomputing,1996:1-1
|
CSCD被引
1
次
|
|
|
|
18.
Karypis G. Multilevel k-way hypergraph partitioning.
Proceedings 1999 Design Automation Conference(Cat. No. 99CH_36361),1999:343-348
|
CSCD被引
1
次
|
|
|
|
19.
Kernighan B W. An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal,1970,49(2):291-307
|
CSCD被引
285
次
|
|
|
|
20.
Veredas F J. FPGA placement improvement using a genetic algorithm and the routing algorithm as a cost function.
2018 21st Euromicro Conference on Digital System Design(DSD),2018:70-76
|
CSCD被引
1
次
|
|
|
|
|