Fully-Actuated System Approach Based Optimal Attitude Tracking Control of Rigid Spacecraft with Actuator Saturation
查看参考文献34篇
文摘
|
In this paper, a fully-actuated system approach (FASA) based control method is proposed for rigid spacecraft attitude tracking with actuator saturation. First, a second-order fully-actuated form of spacecraft attitude error model is established by modified Rodrigues parameters (MRPs). The unknown total disturbance caused by inertial uncertainty and external disturbance is estimated by using extended state observer, then an FASA based controller is developed. Further, a control parameterization method is adopted to optimize the parameter matrices of FASA based controller with the actuator saturation. Finally, a numerical example is carried out to validate the effectiveness of the proposed scheme. |
来源
|
Journal of Systems Science and Complexity
,2022,35(2):688-702 【核心库】
|
DOI
|
10.1007/s11424-022-1515-8
|
关键词
|
Full-actuated system approach
;
modified Rodrigues parameters
;
parameter optimization
;
spacecraft attitude tracking
|
地址
|
School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610065
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
自动化技术、计算机技术;航天(宇宙航行) |
基金
|
国家自然科学基金
;
Huiyan Project for Research on Innovation and Application of Space Science and Technology
|
文献收藏号
|
CSCD:7238868
|
参考文献 共
34
共2页
|
1.
Dong R Q. Anti-unwinding sliding mode attitude control via two modified Rodrigues parameter sets for spacecraft.
Automatica,2021,129:109642
|
CSCD被引
3
次
|
|
|
|
2.
Liu X L. Optimal soft landing control for moon lander.
Automatica,2008,44(4):1097-1103
|
CSCD被引
7
次
|
|
|
|
3.
Su Q Y. Observability Analysis and Navigation Algorithm for Distributed Satellites System Using Relative Range Measurements.
Journal of Systems Science & Complexity,2018,31(5):1206-1226
|
CSCD被引
3
次
|
|
|
|
4.
Xia Y. Attitude tracking of rigid spacecraft with bounded disturbances.
IEEE Transactions on Industrial Electronics,2011,58(2):647-659
|
CSCD被引
29
次
|
|
|
|
5.
Dong R Q. Anti-unwinding sliding mode attitude maneuver control for rigid spacecraft.
IEEE Transactions on Automatic Control,2021
|
CSCD被引
1
次
|
|
|
|
6.
Xiao B. Reaction wheel fault compensation and disturbance rejection for spacecraft attitude tracking.
Journal of Guidance, Control, and Dynamics,2013,36(6):1565-1575
|
CSCD被引
10
次
|
|
|
|
7.
Qiao J Z. Composite nonsingular terminal sliding mode attitude controller for spacecraft with actuator dynamics under matched and mismatched disturbances.
IEEE Transactions on Industrial Informatics,2020,16(2):1153-1162
|
CSCD被引
4
次
|
|
|
|
8.
Xu S D. Study of nonsingular fast terminal sliding-mode fault-tolerant control.
IEEE Transactions on Industrial Electronics,2015,62(6):3906-3913
|
CSCD被引
11
次
|
|
|
|
9.
Zou A M. Finite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),2011,41(4):950-963
|
CSCD被引
29
次
|
|
|
|
10.
Jiang B Y. Fixed-time attitude control for rigid spacecraft with actuator saturation and faults.
IEEE Transactions on Control Systems Technology,2016,24(5):1892-1898
|
CSCD被引
17
次
|
|
|
|
11.
Sun L. Disturbance-observer-based robust backstepping attitude stabilization of spacecraft under input saturation and measurement uncertainty.
IEEE Transactions on Industrial Electronics,2017,64(10):7994-8002
|
CSCD被引
15
次
|
|
|
|
12.
Shao X D. Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation.
IEEE Transactions on Control Systems Technology,2020,28(2):574-582
|
CSCD被引
5
次
|
|
|
|
13.
Zou A M. Fixed-time attitude tracking control for rigid spacecraft.
Automatica,2020,113:108792
|
CSCD被引
9
次
|
|
|
|
14.
Xiao B. Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation.
IEEE Transactions on Control Systems Technology,2012,20(6):1605-1612
|
CSCD被引
29
次
|
|
|
|
15.
Chen H T. Robust Chattering-Free Finite Time Attitude Tracking Control with Input Saturation.
Journal of Systems Science & Complexity,2019,32(6):1597-1629
|
CSCD被引
1
次
|
|
|
|
16.
Ding S H. ADAPTIVE SET STABILIZATION OF THE ATTITUDE OF A RIGID SPACECRAFT WITHOUT ANGULAR VELOCITY MEASUREMENTS.
Journal of Systems Science & Complexity,2011,24(1):105-119
|
CSCD被引
2
次
|
|
|
|
17.
Liang Y W. T-S model-based SMC reliable design for a class of nonlinear control systems.
IEEE Transactions on Industrial Electronics,2009,56(9):3286-3295
|
CSCD被引
3
次
|
|
|
|
18.
Sun L. Saturated adaptive hierarchical fuzzy attitude-tracking control of rigid spacecraft with modeling and measurement uncertainties.
IEEE Transactions on Industrial Electronics,2019,66(5):3742-3751
|
CSCD被引
5
次
|
|
|
|
19.
Liu Y. Event-triggered sliding mode control for attitude stabilization of a rigid spacecraft.
IEEE Transactions on Systems, Man, and Cybernetics: Systems,2020,50(9):3290-3299
|
CSCD被引
6
次
|
|
|
|
20.
Wang C L. Event-triggered adaptive attitude tracking control for spacecraft with unknown actuator faults.
IEEE Transactions on Industrial Electronics,2020,67(3):2241-2250
|
CSCD被引
4
次
|
|
|
|
|