Research on the Trajectory Tracking Control of a 6-DOF Manipulator Based on Fully-Actuated System Models
查看参考文献24篇
文摘
|
The multi-degree of freedom (muti-DOF) manipulator system is a complex control system with the strong coupling feature and high nonlinearity. In this paper, trajectory tracking control of a sixdegree of freedom (6-DOF) manipulator based on fully-actuated system models and a direct parametric method is investigated. The fully-actuated system model of the 6-DOF manipulator is established by using the Denavit Hartenberg (DH) notation and Euler-Lagrange dynamics. A disturbance observer is constructed to solve the nonlinear uncertainties such as unmodeled dynamics and external disturbances. Then, a controller is designed using the direct parametric method to make the 6-DOF manipulator reach the desired position with high accuracy. After that, a switching control strategy is developed to suppress the peak value belonging to the controller. Simulation results reveal the effect of the proposed control approach. |
来源
|
Journal of Systems Science and Complexity
,2022,35(2):641-659 【核心库】
|
DOI
|
10.1007/s11424-022-2045-0
|
关键词
|
Direct parametric approach
;
fully-actuated system
;
manipulator
;
nonlinear disturbance observer
;
trajectory tracking
|
地址
|
1.
School of Automation, Harbin University of Science and Technology, Harbin, 150080
2.
School of Software, Northwestern Polytechnical University, Xi'an, 710072
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
自动化技术、计算机技术 |
基金
|
supported by the Natural Science Foundation of Heilongjiang Province
|
文献收藏号
|
CSCD:7238865
|
参考文献 共
24
共2页
|
1.
Craig J J.
Introduction to Robotics: Mechanics and Control,2018
|
CSCD被引
1
次
|
|
|
|
2.
Cruz G L. Application of robust discontinuous control algorithm for a 5-DOF industrial robotic manipulator in real-time.
Journal of Intelligent & Robotic Systems,2021,101(4):1-17
|
CSCD被引
1
次
|
|
|
|
3.
Liao J. Optimization-based motion planning of mobile manipulator with high degree of kinematic redundancy.
International Journal of Intelligent Robotics and Applications,2019,3(2):115-130
|
CSCD被引
2
次
|
|
|
|
4.
Wang H. Fuzzy sliding mode active disturbance rejection control of an autonomous underwater vehicle-manipulator system.
Journal of Ocean University of China,2020,19(5):1081-1093
|
CSCD被引
2
次
|
|
|
|
5.
Rybus T. Control system for free-floating space manipulator based on nonlinear model predictive control (NMPC).
Journal of Intelligent & Robotic Systems,2017,85(3/4):491-509
|
CSCD被引
9
次
|
|
|
|
6.
Wang Q. Trajectory planning for a 6-DoF manipulator used for orthopaedic surgery.
International Journal of Intelligent Robotics and Applications,2020,4(1):82-94
|
CSCD被引
1
次
|
|
|
|
7.
Sai H. Adaptive nonsingular fast terminal sliding mode impedance control for uncertainty robotic manipulators.
International Journal of Precision Engineering and Manufacturing,2021,22(12):1947-1961
|
CSCD被引
1
次
|
|
|
|
8.
Pervozvanski A A. Robust stabilization of robotic manipulators by PID controllers.
Dynamics and Control,1999,9(3):203-222
|
CSCD被引
2
次
|
|
|
|
9.
Aksoy O. On adaptive output feedback controf robotic manipulators with online disturbance estimation.
Journal of Intelligent & Robotic Systems,2017,85(3/4):633-649
|
CSCD被引
1
次
|
|
|
|
10.
Kolhe J P. Robust control of robot manipulators based on uncertainty and disturbance estimation.
International Journal of Robust and Nonlinear Control,2013,23(1):104-122
|
CSCD被引
10
次
|
|
|
|
11.
Li C. Non-singular terminal sliding mode control of an omnidirectional mobile manipulator based on extended state observer.
International Journal of Intelligent Robotics and Applications,2021,5(2):219-234
|
CSCD被引
1
次
|
|
|
|
12.
Wang X. Research of manipulator trajectory tracking based on adaptive robust iterative learning control.
Cluster Computing,2019,22(2):3079-3086
|
CSCD被引
1
次
|
|
|
|
13.
Wang F. Trajectory tracking control of robot manipulator based on RBF neural network and fuzzy sliding mode.
Cluster Computing,2019,22(3):5799-5809
|
CSCD被引
4
次
|
|
|
|
14.
Zhao Y. Adaptive finite-time backstepping control for a two-wheeled mobile manipulator.
Journal of Mechanical Science and Technology,2018,32(12):5897-5906
|
CSCD被引
1
次
|
|
|
|
15.
Loucif F. Whale optimizer algorithm to tune PID controller for the trajectory tracking control of robot manipulator.
Journal of the Brazilian Society of Mechanical Sciences and Engineering,2020,42(1):1-11
|
CSCD被引
1
次
|
|
|
|
16.
Kumar J. Fractional-order self-tuned fuzzy PID controller for three-link robotic manipulator system.
Neural Computing and Applications,2020,32(11):7235-7257
|
CSCD被引
1
次
|
|
|
|
17.
Awan Z S. Adaptive backstepping based sensor and actuator fault tolerant control of a manipulator.
Journal of Electrical Engineering & Technology,2019,14(6):2497-2504
|
CSCD被引
1
次
|
|
|
|
18.
Liu A. Adaptive control of manipulator based on neural network.
Neural Computing and Applications,2021,33(9):4077-4085
|
CSCD被引
2
次
|
|
|
|
19.
Yen V T. Robust adaptive sliding mode control for industrial robot manipulator using fuzzy wavelet neural networks.
International Journal of Control, Automation and Systems,2017,15(6):2930-2941
|
CSCD被引
1
次
|
|
|
|
20.
Tran D T. Adaptive nonsingular fast terminal sliding mode control of robotic manipulator based neural network approach.
International Journal of Precision Engineering and Manufacturing,2021,22(3):417-429
|
CSCD被引
3
次
|
|
|
|
|