Attitude and Orbit Optimal Control of Combined Spacecraft via a Fully-Actuated System Approach
查看参考文献41篇
文摘
|
This paper investigates the attitude and orbit control for the combined spacecraft formed after a target spacecraft without the autonomous control ability is captured by a service spacecraft. The optimal controller of fully-actuated system is proposed to realize the attitude and orbit stabilization control of combined spacecraft. The stability of the system is proved by introducing Lyapunov function. Numerical simulation of the combined spacecraft and physical experiment based on the combined spacecraft simulator (CSS) are completed. Both simulation and experiment results demonstrate the effectiveness and practicability of the optimal controller of fully-actuated system. |
来源
|
Journal of Systems Science and Complexity
,2022,35(2):623-640 【核心库】
|
DOI
|
10.1007/s11424-022-1492-y
|
关键词
|
Attitude control
;
combined spacecraft
;
fully-actuated system
;
optimal controller
;
orbit control
|
地址
|
1.
Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin, 150001
2.
Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
自动化技术、计算机技术;航天(宇宙航行) |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7238864
|
参考文献 共
41
共3页
|
1.
Ding S H. ADAPTIVE SET STABILIZATION OF THE ATTITUDE OF A RIGID SPACECRAFT WITHOUT ANGULAR VELOCITY MEASUREMENTS.
Journal of Systems Science & Complexity,2011,24(1):105-119
|
CSCD被引
2
次
|
|
|
|
2.
Zhang D W. Output feedback predictive control for discrete quasilinear systems with application to spacecraft flying-around.
Asian Journal of Control,2021
|
CSCD被引
1
次
|
|
|
|
3.
Zhang D W. Coordinated control of quasilinear multiagent systems via output feedback predictive control.
ISA Transactions,2021
|
CSCD被引
2
次
|
|
|
|
4.
Forshaw J L. Removedebris: An in-orbit active debris removal demonstration mission.
Acta Astronautica,2016,127:448-463
|
CSCD被引
17
次
|
|
|
|
5.
Golebiowski W. Validated simulator for space debris removal with nets and other flexible tethers applications.
Acta Astronautica,2016,129:229-240
|
CSCD被引
4
次
|
|
|
|
6.
Qiao J Z. Anti-disturbance attitude control of combined spacecraft with enhanced control allocation scheme.
Chinese Journal of Aeronautics,2018,31(8):1741-1751
|
CSCD被引
6
次
|
|
|
|
7.
Huang P F. Takeover control of attitude maneuver for failed spacecraft.
Journal of Astronautics. (in Chinese),2016,37(8):924-935
|
CSCD被引
2
次
|
|
|
|
8.
Huang P F. Attitude takeover control for spacecraft with unknown parameter.
Control and Decision. (in Chinese),2017,32(9):1547-1555
|
CSCD被引
1
次
|
|
|
|
9.
Huang P F. Post-capture attitude control for a tethered space robot-target combination system.
Robotica,2015,33(4):898-919
|
CSCD被引
6
次
|
|
|
|
10.
Huang P F. Attitude takeover control for post-capture of target spacecraft using space robot.
Aerospace Science and Technology,2016,51:171-180
|
CSCD被引
24
次
|
|
|
|
11.
Zhang T. Stabilization and parameter identification of tumbling space debris with bounded torque in postcapture.
Acta Astronautica,2016,123:301-309
|
CSCD被引
7
次
|
|
|
|
12.
Huang P F. Reconfigurable spacecraft attitude takeover control in post-capture of target by space manipulators.
Journal of the Franklin Institute,2016,353(9):1985-2008
|
CSCD被引
17
次
|
|
|
|
13.
Huang X W. Post-capture attitude control with prescribed performance.
Aerospace Science and Technology,2020,96:1-16
|
CSCD被引
1
次
|
|
|
|
14.
Han D. Combined spacecraft stabilization control after multiple impacts during the capture of a tumbling target by a space robot.
Acta Astronautica,2020,176:24-32
|
CSCD被引
5
次
|
|
|
|
15.
Jiang H Y. Data-driven-based attitude control of combined spacecraft with noncooperative target.
International Journal of Robust and Nonlinear Control,2019,29:5801-5819
|
CSCD被引
1
次
|
|
|
|
16.
Xu W F. On-orbit identifying the inertia parameters of space robotic systems using simple equivalent dynamics.
Acta Astronautica,2017,132:131-142
|
CSCD被引
10
次
|
|
|
|
17.
Wang M M. Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite.
Acta Astronautica,2017,141:98-109
|
CSCD被引
4
次
|
|
|
|
18.
Zhao Q. Integrated design of trajectory tracking and inertia property identification for post-capture of non-cooperative target.
Aerospace Science and Technology,2019,95:1-10
|
CSCD被引
4
次
|
|
|
|
19.
Zhang B. Coordinated stabilization for space robot after capturing a noncooperative target with large inertia.
Acta Astronautica,2017,134:75-84
|
CSCD被引
10
次
|
|
|
|
20.
Huang X W. Dynamic infinity-norm constrained control allocation for attitude tracking control of overactuated combined spacecraft.
Control Theory and Applications,2019,13(11):1692-1703
|
CSCD被引
1
次
|
|
|
|
|