Fully Actuated System Approach for 6DOF Spacecraft Control Based on Extended State Observer
查看参考文献28篇
文摘
|
This paper deals with the problem of position and attitude tracking control for a rigid spacecraft. A fully actuated system (FAS) model for the six degree-of-freedom (6DOF) spacecraft motion is derived first from the state-space model by variable elimination. Considering the uncertainties from external disturbance, unknown motion information, and uncertain inertia properties, an extended state observer (ESO) is designed to estimate the total disturbance. Then, a tracking controller based on FAS approach is designed, and this makes the closed-loop system a constant linear one with an arbitrarily assignable eigenstructure. The solution to the parameter matrices of the observer and controller is given subsequently. It is proved via the Lyapunov stability theory that the observer errors and tracking errors both converge into the neighborhood of the origin. Finally, numerical simulation demonstrates the effectiveness of the proposed controller. |
来源
|
Journal of Systems Science and Complexity
,2022,35(2):604-622 【核心库】
|
DOI
|
10.1007/s11424-022-1498-5
|
关键词
|
Constant linear closed-loop system
;
extended state observer
;
fully actuated system approach
;
relative position and attitude control
|
地址
|
1.
Center for Control Science and Technology, Southern University of Science and Technology, Shenzhen, 518055
2.
Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin, 150001
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
自动化技术、计算机技术;航天(宇宙航行) |
基金
|
supported by the Science Center Program of the National Natural Science Foundation of China
;
国家自然科学基金
;
国家自然科学基金
|
文献收藏号
|
CSCD:7238863
|
参考文献 共
28
共2页
|
1.
Zhang F. Integrated translational and rotational finite-time maneuver of a rigid spacecraft with actuator misalignment.
IET Control Theory & Applications,2012,6(9):1192-1204
|
CSCD被引
8
次
|
|
|
|
2.
Li Q. Disturbance observer based control for spacecraft proximity operations with path constraint.
Aerospace Science and Technology,2018,79:154-163
|
CSCD被引
2
次
|
|
|
|
3.
Sun L. Saturated Adaptive Output-Constrained Control of Cooperative Spacecraft Rendezvous and Docking.
IEEE/CAA Journal of Automatica Sinica,2019,6(6):1462-1470
|
CSCD被引
5
次
|
|
|
|
4.
Li Q. Extended state observer based output control for spacecraft rendezvous and docking with actuator saturation.
ISA Transactions,2019,88:37-49
|
CSCD被引
2
次
|
|
|
|
5.
Duan G R. High-order system approaches: III. Observability and observer design.
Acta Automatica Sinica,2020,46(9):1885-1895
|
CSCD被引
15
次
|
|
|
|
6.
Duan G R. High-order fully actuated system approaches: Part III. Robust control and high-order backstepping.
International Journal of Systems Science,2021,52(5):952-971
|
CSCD被引
25
次
|
|
|
|
7.
Duan G R. High-order fully actuated system approaches: Part IV. Adaptive control and highorder backstepping.
International Journal of Systems Science,2021,52(5):972-989
|
CSCD被引
21
次
|
|
|
|
8.
Duan G R. High-order fully actuated system approaches: Part V. Robust adaptive control.
International Journal of Systems Science,2021,52(10):2129-2143
|
CSCD被引
21
次
|
|
|
|
9.
Duan G R. High-order fully-actuated system approaches: Part VI. Disturbance attenuation and decoupling.
International Journal of Systems Science,2021,52(10):2161-2181
|
CSCD被引
19
次
|
|
|
|
10.
Duan G R. High-order fully actuated system approaches: Part VIII. Optimal control with application in spacecraft attitude stabilisation.
International Journal of Systems Science,2022,53(1):54-73
|
CSCD被引
13
次
|
|
|
|
11.
Sun L. Robust adaptive relative position and attitude control for spacecraft autonomous proximity.
ISA Transactions,2016,63:11-19
|
CSCD被引
3
次
|
|
|
|
12.
Sun L. Disturbance observer-based robust saturated control for spacecraft proximity maneuvers.
IEEE Transactions on Control Systems Technology,2018,26(2):684-692
|
CSCD被引
4
次
|
|
|
|
13.
Mammarella M. Tube-based robust model predictive control for spacecraft proximity operations in the presence of persistent disturbance.
Aerospace Science and Technology,2018,77:585-594
|
CSCD被引
5
次
|
|
|
|
14.
Hu Q. Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode.
IEEE Transactions on Aerospace and Electronic Systems,2017,54(1):2-17
|
CSCD被引
2
次
|
|
|
|
15.
Huang Y. Nonlinear robust H∞tracking control for 6 DOF spacecraft formation with input saturation.
Proceedings of 2016 IEEE 55th Conference on Decision and Control,2016
|
CSCD被引
1
次
|
|
|
|
16.
Han J. From PID to active disturbance rejection control.
IEEE Transactions on Industrial Electronics,2009,56(3):900-906
|
CSCD被引
193
次
|
|
|
|
17.
Ran D. Adaptive extended-state observer-based fault tolerant attitude control for spacecraft with reaction wheels.
Acta Astronautica,2018,145:501-514
|
CSCD被引
4
次
|
|
|
|
18.
Gong L G. Spacecraft output feedback attitude control based on extended state observer and adaptive dynamic programming.
Journal of the Franklin Institute,2019,356(10):4971-5000
|
CSCD被引
2
次
|
|
|
|
19.
Gao Z. Scaling and bandwidth-parameterization based controller tuning.
Proceedings of the American Control Conference,2006
|
CSCD被引
2
次
|
|
|
|
20.
Li J. On the necessity, scheme, and basis of the linear-nonlinear switching in active disturbance rejection control.
IEEE Transactions on Industrial Electronics,2016,64(2):1425-1435
|
CSCD被引
4
次
|
|
|
|
|