Fixed-Time Leader-Following Formation Control of Fully-Actuated Underwater Vehicles Without Velocity Measurements
查看参考文献33篇
文摘
|
This paper is concerned with formation control of fully-actuated underwater vehicles (FUVs), focusing on improving system convergence speed and overcoming velocity measurement limitation. By employing the fixed-time control theory and command filtering technique, a full state feedback formation algorithm is proposed, which makes the follower track the leader in a given time with all signals in the system globally practically stabilized in fixed time. To avoid degraded control performance due to inaccurate velocity measurement, a fixed-time convergent observer is designed to estimate the velocity of FUVs. Then the authors give an observer-based fixed-time control method, with which acceptable formation performance can be achieved in fixed time without velocity measurement. The effectiveness and performance of the proposed method are demonstrated by numerical simulations. |
来源
|
Journal of Systems Science and Complexity
,2022,35(2):559-585 【核心库】
|
DOI
|
10.1007/s11424-022-1502-0
|
关键词
|
Fixed-time control
;
formation control
;
fully-actuated underwater vehicles (FUVs)
;
state feedback control
;
velocity observer
|
地址
|
School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
自动化技术、计算机技术;水路运输 |
基金
|
国家自然科学基金
;
河北省自然科学基金
;
the Youth Foundation of Hebei Educational Committee
|
文献收藏号
|
CSCD:7238861
|
参考文献 共
33
共2页
|
1.
Cui R. Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning.
IEEE Transactions on Systems, Man, and Cybernetics: Systems,2017,47(6):1019-1029
|
CSCD被引
20
次
|
|
|
|
2.
Peng Z. Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks.
IEEE Transactions on Systems, Man, and Cybernetics: Systems,2018,48(4):535-544
|
CSCD被引
14
次
|
|
|
|
3.
Li J. Robust adaptive trajectory tracking control of underactuated autonomous underwater vehicles with prescribed performance.
International Journal of Robust and Nonlinear Control,2019,29(14):4629-4643
|
CSCD被引
4
次
|
|
|
|
4.
Gao Z. Fixed-time Sliding Mode Formation Control of AUVs Based on a Disturbance Observer.
IEEE/CAA Journal of Automatica Since,2020,7(2):539-545
|
CSCD被引
32
次
|
|
|
|
5.
Liu H. Robust time-varying formation control for multiple underwater vehicles subject to nonlinearities and uncertainties.
International Journal of Robust and Nonlinear Control,2019,29(9):2712-2724
|
CSCD被引
1
次
|
|
|
|
6.
Shojaei K. Three-dimensional tracking control of autonomous underwater vehicles with limited torque and without velocity sensors.
Robotica,2018,36(3):374-394
|
CSCD被引
1
次
|
|
|
|
7.
Shojaei K. Three-dimensional neural network tracking control of a moving target by underactuated autonomous underwater vehicles.
Neural Computing and Applications,2019,31(2):509-521
|
CSCD被引
5
次
|
|
|
|
8.
Li J. Robust time-varying formation control for underactuated autonomous underwater vehicles with disturbances under input saturation.
Ocean Engineering,2019,179:180-188
|
CSCD被引
7
次
|
|
|
|
9.
Cui R. Leader-follower formation control of underactuated autonomous underwater vehicles.
Ocean Engineering,2010,37(17):1491-1502
|
CSCD被引
46
次
|
|
|
|
10.
Gao Z. Adaptive formation control of autonomous underwater vehicles with model uncertainties.
International Journal of Adaptive Control and Signal Processing,2018,32(7):1067-1080
|
CSCD被引
4
次
|
|
|
|
11.
Park B S. Adaptive formation control of underactuated autonomous underwater vehicles.
Ocean Engineering,2015,96:1-7
|
CSCD被引
10
次
|
|
|
|
12.
Shojaei K. Neural network formation control of underactuated autonomous underwater vehicles with saturating actuators.
Neurocomputing,2016,194:372-384
|
CSCD被引
10
次
|
|
|
|
13.
Jin X. Fault tolerant finite-time leader-follower formation control for autonomous surface vessels with LOS range and angle constraints.
Automatica,2016,68:228-236
|
CSCD被引
21
次
|
|
|
|
14.
Du H. Finite-time formation control for a group of quadrotor aircraft.
Aerospace Science and Technology,2017,69:609-616
|
CSCD被引
8
次
|
|
|
|
15.
Li S. Finite-time output feedback tracking control for autonomous underwater vehicles.
IEEE Journal of Oceanic Engineering,2015,40(3):727-751
|
CSCD被引
12
次
|
|
|
|
16.
Defoort M. Leader-follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics.
IET Control Theory and Applications,2015,9(14):2165-2170
|
CSCD被引
17
次
|
|
|
|
17.
Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems.
IEEE Transactions on Automatic Control,2012,57(8):2106-2110
|
CSCD被引
214
次
|
|
|
|
18.
Tian B. A fixed-time output feedback control scheme for double integrator systems.
Automatica,2017,80:17-24
|
CSCD被引
23
次
|
|
|
|
19.
Zuo Z. Nonsingular fixed-time consensus tracking for second-order multi-agent networks.
Automatica,2015,54:305-309
|
CSCD被引
72
次
|
|
|
|
20.
Zhang L J. Adaptive output feedback control based on DRFNN for AUV.
Ocean Engineering,2009,36(9/10):716-722
|
CSCD被引
26
次
|
|
|
|
|