Trajectory Tracking Control for Under-Actuated Hovercraft Using Differential Flatness and Reinforcement Learning-Based Active Disturbance Rejection Control
查看参考文献36篇
文摘
|
This paper proposes a scheme of trajectory tracking control for the hovercraft. Since the model of the hovercraft is under-actuated, nonlinear, and strongly coupled, it is a great challenge for the controller design. To solve this problem, the control scheme is divided into two parts. Firstly, we employ differential flatness method to find a set of flat outputs and consider part of the nonlinear terms as uncertainties. Consequently, we convert the under-actuated system into a full-actuated one. Secondly, a reinforcement learning-based active disturbance rejection controller (RL-ADRC) is designed. In this method, an extended state observer (ESO) is designed to estimate the uncertainties of the system, and an actorcritic-based reinforcement learning (RL) algorithm is used to approximate the optimal control strategy. Based on the output of the ESO, the RL-ADRC compensates for the total uncertainties in real-time, and simultaneously, generates the optimal control strategy by RL algorithm. Simulation results show that, compared with the traditional ADRC method, RL-ADRC does not need to manually tune the controller parameters, and the control strategy is more robust. |
来源
|
Journal of Systems Science and Complexity
,2022,35(2):502-521 【核心库】
|
DOI
|
10.1007/s11424-022-2037-0
|
关键词
|
Active disturbance rejection control
;
differential flatness
;
reinforcement learning
;
trajectory tracking control
;
under-actuated system
|
地址
|
School of Automation, Beijing Institute of Technology, Beijing, 100190
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
自动化技术、计算机技术;水路运输 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7238857
|
参考文献 共
36
共2页
|
1.
Okafor B E. Development of a hovercraft prototype.
International Journal of Engineering and Technology,2013,3(3):276-281
|
CSCD被引
1
次
|
|
|
|
2.
Jeong S. Coupled multiple sliding-mode control for robust trajectory tracking of hovercraft with external disturbances.
IEEE Transactions on Industrial Electronics,2017,65(5):4103-4113
|
CSCD被引
4
次
|
|
|
|
3.
Jiang P. Global tracking control of underactuated ships by Lyapunov's direct method.
Automatica,2002,38(2):301-309
|
CSCD被引
1
次
|
|
|
|
4.
Do D. Practical control of underactuated ships.
Ocean Engineering,2010,37(13):1111-1119
|
CSCD被引
23
次
|
|
|
|
5.
Do D. Underactuated ship global tracking under relaxed conditions.
IEEE Transactions on Automatic Control,2002,47(9):1529-1536
|
CSCD被引
1
次
|
|
|
|
6.
Dong Z. Trajectory tracking control of underactuated USV based on modified backstepping approach.
International Journal of Naval Architecture and Ocean Engineering,2015,7(5):817-832
|
CSCD被引
2
次
|
|
|
|
7.
Fu H. Analysis and consideration on safety of all-lift hovercraft.
Ship & Boat,2008,6:1-3
|
CSCD被引
1
次
|
|
|
|
8.
Fu M. Human-centered automatic tracking system for underactuated hovercraft based on adaptive chattering-free full-order terminal sliding mode control.
IEEE Access,2018,6:37883-37892
|
CSCD被引
1
次
|
|
|
|
9.
Duan G. High-order fully actuated system approaches: Part I. Models and basic procedure.
International Journal of Systems Science,2021,52(2):422-435
|
CSCD被引
4
次
|
|
|
|
10.
Duan G. High-order fully actuated system approaches: Part II. Generalized strict-feedback systems.
International Journal of Systems Science,2021,52(3):437-454
|
CSCD被引
2
次
|
|
|
|
11.
Duan G. High-order fully actuated system approaches: Part III. Robust control and high-order backstepping.
International Journal of Systems Science,2021,52(5):952-971
|
CSCD被引
1
次
|
|
|
|
12.
Tee K P. Control of fully actuated ocean surface vessels using a class of feedforward approximators.
IEEE Transactions on Control Systems Technology,2006,14(4):750-756
|
CSCD被引
13
次
|
|
|
|
13.
Zheng P. TiltDrone: A fully-actuated tilting quadrotor platform.
IEEE Robotics and Automation Letters,2020,5(4):6845-6852
|
CSCD被引
3
次
|
|
|
|
14.
Zhao Z. Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints.
IEEE Transactions on Control Systems Technology,2013,22(4):1536-1543
|
CSCD被引
1
次
|
|
|
|
15.
Martin P. Any (controllable) driftless system with m inputs and m+ 2 states is flat.
Proceedings of 1995 34th IEEE Conference on Decision and Control. 3,1995:2886-2891
|
CSCD被引
1
次
|
|
|
|
16.
Ma D. Flatness-based adaptive sliding mode tracking control for a quadrotor with disturbances.
Journal of the Franklin Institute,2018,355(14):6300-6322
|
CSCD被引
1
次
|
|
|
|
17.
Yu Y. 6D pose task trajectory tracking for a class of 3D aerial manipulator from differential flatness.
IEEE Access,2019,7:52257-52265
|
CSCD被引
1
次
|
|
|
|
18.
Xia Y. Trajectory planning and tracking for four-wheel steering vehicle based on differential flatness and active disturbance rejection controller.
International Journal of Adaptive Control and Signal Processing,2021,35(11):2214-2244
|
CSCD被引
1
次
|
|
|
|
19.
Han J. From PID to active disturbance rejection control.
IEEE transactions on Industrial Electronics,2009,56(3):900-906
|
CSCD被引
193
次
|
|
|
|
20.
Xia Y. Application of active disturbance rejection control in tank gun control system.
Journal of the Franklin Institute,2014,351(4):2299-2314
|
CSCD被引
7
次
|
|
|
|
|