帮助 关于我们

返回检索结果

Trajectory Tracking Control for Under-Actuated Hovercraft Using Differential Flatness and Reinforcement Learning-Based Active Disturbance Rejection Control

查看参考文献36篇

文摘 This paper proposes a scheme of trajectory tracking control for the hovercraft. Since the model of the hovercraft is under-actuated, nonlinear, and strongly coupled, it is a great challenge for the controller design. To solve this problem, the control scheme is divided into two parts. Firstly, we employ differential flatness method to find a set of flat outputs and consider part of the nonlinear terms as uncertainties. Consequently, we convert the under-actuated system into a full-actuated one. Secondly, a reinforcement learning-based active disturbance rejection controller (RL-ADRC) is designed. In this method, an extended state observer (ESO) is designed to estimate the uncertainties of the system, and an actorcritic-based reinforcement learning (RL) algorithm is used to approximate the optimal control strategy. Based on the output of the ESO, the RL-ADRC compensates for the total uncertainties in real-time, and simultaneously, generates the optimal control strategy by RL algorithm. Simulation results show that, compared with the traditional ADRC method, RL-ADRC does not need to manually tune the controller parameters, and the control strategy is more robust.
来源 Journal of Systems Science and Complexity ,2022,35(2):502-521 【核心库】
DOI 10.1007/s11424-022-2037-0
关键词 Active disturbance rejection control ; differential flatness ; reinforcement learning ; trajectory tracking control ; under-actuated system
地址

School of Automation, Beijing Institute of Technology, Beijing, 100190

语种 英文
文献类型 研究性论文
ISSN 1009-6124
学科 自动化技术、计算机技术;水路运输
基金 国家自然科学基金
文献收藏号 CSCD:7238857

参考文献 共 36 共2页

1.  Okafor B E. Development of a hovercraft prototype. International Journal of Engineering and Technology,2013,3(3):276-281 CSCD被引 1    
2.  Jeong S. Coupled multiple sliding-mode control for robust trajectory tracking of hovercraft with external disturbances. IEEE Transactions on Industrial Electronics,2017,65(5):4103-4113 CSCD被引 4    
3.  Jiang P. Global tracking control of underactuated ships by Lyapunov's direct method. Automatica,2002,38(2):301-309 CSCD被引 1    
4.  Do D. Practical control of underactuated ships. Ocean Engineering,2010,37(13):1111-1119 CSCD被引 23    
5.  Do D. Underactuated ship global tracking under relaxed conditions. IEEE Transactions on Automatic Control,2002,47(9):1529-1536 CSCD被引 1    
6.  Dong Z. Trajectory tracking control of underactuated USV based on modified backstepping approach. International Journal of Naval Architecture and Ocean Engineering,2015,7(5):817-832 CSCD被引 2    
7.  Fu H. Analysis and consideration on safety of all-lift hovercraft. Ship & Boat,2008,6:1-3 CSCD被引 1    
8.  Fu M. Human-centered automatic tracking system for underactuated hovercraft based on adaptive chattering-free full-order terminal sliding mode control. IEEE Access,2018,6:37883-37892 CSCD被引 1    
9.  Duan G. High-order fully actuated system approaches: Part I. Models and basic procedure. International Journal of Systems Science,2021,52(2):422-435 CSCD被引 4    
10.  Duan G. High-order fully actuated system approaches: Part II. Generalized strict-feedback systems. International Journal of Systems Science,2021,52(3):437-454 CSCD被引 2    
11.  Duan G. High-order fully actuated system approaches: Part III. Robust control and high-order backstepping. International Journal of Systems Science,2021,52(5):952-971 CSCD被引 1    
12.  Tee K P. Control of fully actuated ocean surface vessels using a class of feedforward approximators. IEEE Transactions on Control Systems Technology,2006,14(4):750-756 CSCD被引 13    
13.  Zheng P. TiltDrone: A fully-actuated tilting quadrotor platform. IEEE Robotics and Automation Letters,2020,5(4):6845-6852 CSCD被引 3    
14.  Zhao Z. Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints. IEEE Transactions on Control Systems Technology,2013,22(4):1536-1543 CSCD被引 1    
15.  Martin P. Any (controllable) driftless system with m inputs and m+ 2 states is flat. Proceedings of 1995 34th IEEE Conference on Decision and Control. 3,1995:2886-2891 CSCD被引 1    
16.  Ma D. Flatness-based adaptive sliding mode tracking control for a quadrotor with disturbances. Journal of the Franklin Institute,2018,355(14):6300-6322 CSCD被引 1    
17.  Yu Y. 6D pose task trajectory tracking for a class of 3D aerial manipulator from differential flatness. IEEE Access,2019,7:52257-52265 CSCD被引 1    
18.  Xia Y. Trajectory planning and tracking for four-wheel steering vehicle based on differential flatness and active disturbance rejection controller. International Journal of Adaptive Control and Signal Processing,2021,35(11):2214-2244 CSCD被引 1    
19.  Han J. From PID to active disturbance rejection control. IEEE transactions on Industrial Electronics,2009,56(3):900-906 CSCD被引 193    
20.  Xia Y. Application of active disturbance rejection control in tank gun control system. Journal of the Franklin Institute,2014,351(4):2299-2314 CSCD被引 7    
引证文献 2

1 Wu Aiguo Fully Actuated System Approaches: Theory and Applications Journal of Systems Science and Complexity,2022,35(2):437-440
CSCD被引 0 次

2 蔺凤琴 基于全驱系统方法的冷带轧机压下系统自适应同步控制 系统科学与数学,2023,43(11):2758-2772
CSCD被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号