基于POD-Galerkin降维方法的热毛细对流分岔分析
BIFURCATION ANALYSIS OF THERMOCAPILLARY CONVECTION BASED ON POD-GALERKIN REDUCED-ORDER METHOD
查看参考文献30篇
文摘
|
作为流动与传热相互耦合的非线性过程,热毛细对流有着复杂的转捩过程,探究流场和温度场随参数变化而发生的分岔现象,是热毛细对流研究的一个重要课题.基于本征正交分解的POD-Galerkin降维方法可以通过提取特征模态,构建低维模型,实现流场的快速计算.数值分岔方法可以通过求解含参数动力系统的分岔方程,直接计算稳定解和分岔点.探究了将直接数值模拟方法、POD-Galerkin降维方法、数值分岔方法的优势结合,以提高热毛细对流转捩过程分析效率的可行性.利用直接数值模拟得到的流场和温度场数据,构建了不同体积比下,二维有限长液层热毛细对流的POD-Galerkin低维模型,在低维模型上采用数值积分及数值分岔方法计算了分岔点,得到了低维方程的分岔图.在一定参数范围内,在低维模型上模拟热毛细对流,对雷诺数和体积比进行参数外推,通过与直接数值模拟的结果对比,验证了低维模型的准确性与鲁棒性.说明了低维方程可以定性反映原高维系统的流动特性,而定量方面,由低维模型和直接数值模拟计算得到的周期解频率的相对误差大约为5%.验证了利用POD-Galerkin降维方法研究热毛细对流的可行性. |
其他语种文摘
|
Thermocapillary convection is driven by surface tension gradient caused by temperature gradient. The flow is subject to nonlinear interactions between convection and heat transfer, so it has complex transition behaviors. It is significant to investigate the flow bifurcation phenomenon as parameters in the governing equations change. The PODGalerkin reduced-order method is a fast fluid computational method, based on proper orthogonal decomposition and Galerkin projection. The numerical bifurcation method finds the parameter values at which bifurcation exists by computing the asymptotic flow states and bifurcation points directly. In order to tackle flow transition problems in a more efficient way, a combination of direct numerical simulation, POD-Galerkin reduced-order method and numerical bifurcation method is applied to investigate the transition behavior of thermocapillary convection in a liquid layer. The POD reduced-order model of thermocapillary convection in a 2D cavity under different volume ratios is established and its bifurcation diagram is obtained by numerical bifurcation method. The validity of such a model for Reynolds numbers and volume ratios that are different from those for which the model is derived is studied and the possibility of modelling thermocapillary flow in a simple geometry over a range of flow parameters is assessed. Compared with the results obtained by direct numerical simulation, the accuracy and robustness of the low-order model are verified. The results show that the reduced-order model reflects qualitatively similar flow characteristics to the original high-order system, and quantitively, the relative error of frequency of periodic solution of the reduced-order model to that obtained by the direct numerical simulation is around 5%. Hence, the feasibility of the POD-Galerkin reduced-order method on thermocapillary convection is confirmed. |
来源
|
力学学报
,2022,54(5):1186-1198 【核心库】
|
DOI
|
10.6052/0459-1879-21-642
|
关键词
|
本征正交分解
;
降维模型
;
分岔
;
转捩
;
热毛细对流
|
地址
|
1.
中国科学院力学研究所, 中国科学院微重力重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家自然科学基金
;
中国科学院前沿科学重点研究
|
文献收藏号
|
CSCD:7224093
|
参考文献 共
30
共2页
|
1.
Lappa M.
Thermal Convection, Chichester,2009
|
CSCD被引
1
次
|
|
|
|
2.
Hu W R. Thermocapillary convection in floating zones.
Applied Mechanics Reviews,2008,61(1):010803
|
CSCD被引
4
次
|
|
|
|
3.
Duan L. Thermocapillary convection space experiment on the SJ-10 recoverable satellite.
Journal of Visualized Experiments,2020,157:59998
|
CSCD被引
1
次
|
|
|
|
4.
Imaishi N. Effects of pr and pool curvature on thermocapillary flow instabilities in annular pool.
International Journal of Heat and Mass Transfer,2020,149:119103
|
CSCD被引
1
次
|
|
|
|
5.
Mo D M. Aspect ratio dependence of thermocapillary flow instability of moderate-Prandtl number fluid in annular pools heated from inner cylinder.
Microgravity Science and Technology,2021,33(6):66
|
CSCD被引
1
次
|
|
|
|
6.
Chen E H. Transient thermocapillary convection flows in a rectangular cavity with an evenly heated lateral wall.
Physics of Fluids,2021,33(1):013602
|
CSCD被引
1
次
|
|
|
|
7.
Schwabe D. Thermocapillary flow instabilities in an annulus under microgravity-Results of the experiment magia.
Advances in Space Research,2002,29(4):629-638
|
CSCD被引
11
次
|
|
|
|
8.
Bucchignani E. Horizontal thermocapillary convection of succinonitrile: steady state, instabilities, and transition to chaos.
Physical Review E,2004,69(5):056319
|
CSCD被引
3
次
|
|
|
|
9.
Li K. Some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers of finite extent.
Physics of Fluids,2016,28(5):054106
|
CSCD被引
2
次
|
|
|
|
10.
Jiang H. A peculiar bifurcation transition route of thermocapillary convection in rectangular liquid layers.
Experimental Thermal and Fluid Science,2017,88:8-15
|
CSCD被引
4
次
|
|
|
|
11.
Chow S N.
Methods of Bifurcation Theory,1982
|
CSCD被引
41
次
|
|
|
|
12.
Seydel R.
Practical Bifurcation and Stability Analysis,2010
|
CSCD被引
3
次
|
|
|
|
13.
Marta N. Continuation of bifurcations of periodic orbits for large-scale systems.
SIAM Journal on Applied Dynamical Systems,2015,14(2):674-698
|
CSCD被引
1
次
|
|
|
|
14.
Dijkstra H A. Numerical bifurcation methods and their application to fluid dynamics: Analysis beyond simulation.
Communications in Computational Physics,2014,15(1):1-45
|
CSCD被引
4
次
|
|
|
|
15.
Juan S U. Stationary flows and periodic dynamics of binary mixtures in tall laterally heated slots.
Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics,2019:171-216
|
CSCD被引
1
次
|
|
|
|
16.
Juan S U. Continuation of double Hopf points in thermal convection of rotating fluid spheres.
SIAM Journal on Applied Dynamical Systems,2021,20(1):208-231
|
CSCD被引
1
次
|
|
|
|
17.
Schmid P J. Dynamic mode decomposition of numerical and experimental data.
Journal of Fluid Mechanics,2010,656:5-28
|
CSCD被引
148
次
|
|
|
|
18.
Lumley J L. The structure of inhomogeneous turbulent flows.
Atmospheric Turbulence and Radio Wave Propagation
|
CSCD被引
1
次
|
|
|
|
19.
寇家庆.
非定常气动力建模与流场降阶方法研究.[硕士论文],2018
|
CSCD被引
1
次
|
|
|
|
20.
Podvin B. Low-order models for the flow in a differentially heated cavity.
Physics of Fluids,2001,13(11):3204-3214
|
CSCD被引
2
次
|
|
|
|
|