天问一号多光谱相机设计与在轨验证
Design and on-orbit verification of Tianwen-1 multispectral camera
查看参考文献14篇
文摘
|
中国的首次火星探测任务天问一号探测器于2020年7月23日成功发射.多光谱相机是天问一号的重要载荷,安装在祝融号巡视器的桅杆上,其科学目标为获取着陆区及巡视区多光谱图像,研究火星表面物质组成,获取火星化学演化的基础信息.本文介绍了天问一号多光谱相机的方案及设计结果.基于提高可靠性考虑,天问一号多光谱相机通过切换8个不同厚度玻璃制成的窄带滤光片,实现多光谱成像并校正轴向色差;通过切换6个不同厚度的调焦补偿片来实现调焦功能.在轨工作科学数据表明多光谱相机图像清晰,光谱数据正常. |
其他语种文摘
|
China's first Mars exploration mission Tianwen-1 was successfully launched on July 23,2020.The multispectral camera is an essential payload of Tianwen-1 and is installed on the mast of the Zhurong rover.The scientific goals of the mission are to obtain multispectral images of the landing and inspection zones,investigate the surface material composition on Mars,and obtain basic information on the chemical evolution of Mars.This article introduces the scheme and design results of the Tianwen-1 multispectral camera.To improve reliability,Tianwen-1 realizes multispectral imaging and corrects axial chromatic aberration by switching eight narrow-band filters with different thicknesses,and achieves focusing function by switching six focus compensation lenses of different thicknesses.The scientific data of on-orbit work shows that the image is clear and the spectral data are normal.The spectral reflectance data of the calibration board taken by the multispectral camera on Mars are consistent with the ground measurement data.The spectral reflectance data of the Martian surface obtained by the multispectral camera are basically consistent with the spectral reflectance data obtained by the Mars Reconnaissance Orbiter Imaging Spectrometer (CRISM) in orbit. |
来源
|
中国科学. 物理学
, 力学, 天文学,2022,52(3):239504 【核心库】
|
DOI
|
10.1360/SSPMA-2021-0294
|
关键词
|
多光谱相机
;
天问一号
;
火星探测
|
地址
|
中国科学院西安光学精密机械研究所, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-7275 |
学科
|
航天(宇宙航行) |
基金
|
火星探测天问一号任务和国家自然科学基金
|
文献收藏号
|
CSCD:7215962
|
参考文献 共
14
共1页
|
1.
欧阳自远. 火星及其环境.
航天器环境工程,2012,29:591-600
|
CSCD被引
27
次
|
|
|
|
2.
Hoffman S J.
Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team. Technical Report,1997
|
CSCD被引
1
次
|
|
|
|
3.
于登云. 火星探测发展历程与未来展望.
深空探测学报,2016,3:108-113
|
CSCD被引
44
次
|
|
|
|
4.
Smith P H. Results from the Mars Pathfinder camera.
Science,1997,278:1758-1765
|
CSCD被引
5
次
|
|
|
|
5.
Bell J F III. Mars exploration rover Athena panoramic camera (Pancam) investigation.
J Geophys Res,2003,108:8063
|
CSCD被引
3
次
|
|
|
|
6.
Malin M C. The Mars Science Laboratory (MSL) mast cameras and descent imager: Investigation and instrument descriptions.
Earth Space Sci,2017,4:506-539
|
CSCD被引
2
次
|
|
|
|
7.
Bell J F III. The Mars 2020 perseverance rover mast camera zoom (Mastcam-Z) multispectral, stereoscopic imaging investigation.
Space Sci Rev,2021,217:24
|
CSCD被引
1
次
|
|
|
|
8.
Smith P H. The imager for Mars Pathfinder experiment.
J Geophys Res,1997,102:4003-4025
|
CSCD被引
1
次
|
|
|
|
9.
Bell J F III. Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum.
Science,2004,306:1703-1709
|
CSCD被引
8
次
|
|
|
|
10.
Squyres S W. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars.
Science,2004,306:1709-1714
|
CSCD被引
16
次
|
|
|
|
11.
Vaniman D T. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars.
Science,2014,343:1243480
|
CSCD被引
10
次
|
|
|
|
12.
Wellington D F. Visible to near-infrared MSL/Mastcam multispectral imaging: Initial results from select highinterest science targets within Gale Crater, Mars.
Am Miner,2017,102:1202-1217
|
CSCD被引
3
次
|
|
|
|
13.
Zou Y. Scientific objectives and payloads of Tianwen-1, China's first Mars exploration mission.
Adv Space Res,2021,67:812-823
|
CSCD被引
45
次
|
|
|
|
14.
王红. 基于光源相对光谱功率分布的颜色真值获取方法.
光谱学与光谱分析,2018,38:877-882
|
CSCD被引
3
次
|
|
|
|
|