无机氮供应对甘蓝型油菜组培苗盐耐受能力的影响
Effect of inorganic nitrogen supply on the salt-tolerance of Brassica napus plantlets in vitro
查看参考文献34篇
文摘
|
该研究以甘蓝型油菜组培苗为材料,使用硝酸钠来提供唯一氮源和盐胁迫条件,测定甘蓝型油菜组培苗的生物量、叶绿素含量和叶片稳定碳同位素值,通过稳定碳同位素值评估甘蓝型油菜组培苗的自养能力,并基于自养能力研究甘蓝型油菜组培苗的无机氮供应与盐耐受能力的关系。结果表明: (1)供应40 mmol·L~(-1)硝态氮能消除轻度盐胁迫的不利影响,供应80 mmol·L~(-1)硝态氮能有效缓减中度盐胁迫的不利影响,但在重度盐胁迫条件下,即使供应过量的无机氮,甘蓝型油菜组培苗的生长仍然受到显著的抑制。(2)甘蓝型油菜组培苗的叶绿素含量随盐胁迫程度的增加而逐渐降低。(3)甘蓝型油菜组培苗的自养能力在轻度盐胁迫时达到最大,但盐胁迫程度的加剧会显著降低甘蓝型油菜组培苗的自养能力。由此可知,当植物的无机氮需求得到满足后,自养能力的强弱将决定植物的盐耐受能力,而过量的无机氮供应不能提高重度盐胁迫条件下植物的自养能力。 |
其他语种文摘
|
The Brassica napus (Bn) plantlets in vitro were used as the experimental materials in this study. The sodium nitrate was employed to provide the sole nitrogen source and salt stress. The growth parameters,chlorophyll contents and foliar δ~(13)C of B. napus plantlets were measured in this study. The photosynthetic capacity of B. napus plantlets was estimated by the stable carbon isotope value. The relationship between inorganic nitrogen supply and salt-tolerance of the B. napus plantlets was studied based on the photosynthetic capacity. The results were as follows: (1) The deleterious effect of slight salt stress could be counteracted by 40 mmol·L~(-1) sodium nitrate,while the deleterious effect of moderate salt stress could be effectively relieved by 80 mmol·L~(-1) sodium nitrate. However,even if the inorganic nitrogen supply was excessive,the growth of B. napus plantlets was heavily inhibited by the severe salt stress. (2) The chlorophyll contents of B. napus plantlets decreased gradually with increasing salt stress. (3) The photosynthetic capacity of B. napus plantlets reached the maximum under slight salt stress condition. However,the photosynthetic capacity of B. napus plantlets decreased obviously with increasing salt stress. Hence,when the inorganic nitrogen demand is met for plants, the salt-tolerance of plants will depend on the photosynthetic capacity. Excessive inorganic nitrogen supply can not improve the photosynthetic capacity of plants suffered from the severe salt stress. |
来源
|
广西植物
,2022,42(3):422-428 【扩展库】
|
DOI
|
10.11931/guihaia.gxzw202007009
|
关键词
|
甘蓝型油菜组培苗
;
硝酸钠
;
盐胁迫
;
稳定碳同位素
;
自养能力
|
地址
|
1.
贵州师范大学喀斯特研究院, 贵阳, 550001
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
3.
贵州农业职业学院, 贵阳, 551400
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3142 |
学科
|
植物学 |
基金
|
国家“十三五”重点研发计划课题
;
贵州省项目
;
国家自然科学基金重点项目
;
贵州师范大学2018年博士科研启动项目
|
文献收藏号
|
CSCD:7213893
|
参考文献 共
34
共2页
|
1.
Alsaadawi I S. Effects of three phenolic acids on chlorophyll content and ions uptake in cowpea seedlings.
J Chem Ecol,1986,12(1):221-227
|
CSCD被引
10
次
|
|
|
|
2.
Amonkar D V. Nitrogen uptake and assimilation in halophytes.
Nitrogen nutrition in higher plants,1995:431-445
|
CSCD被引
1
次
|
|
|
|
3.
Amor F M. Alleviation of salinity stress in broccoli using foliar urea or methyl-jasmonate: analysis of growth,gas exchange,and isotope composition.
Plant Growth Regul,2011,63(1):55-62
|
CSCD被引
2
次
|
|
|
|
4.
Apse M P. Na~+ transport in plants.
Febs Lett,2007,581(12):2247-2254
|
CSCD被引
41
次
|
|
|
|
5.
Black B L. Partitioning of nitrate assimilation among leaves,stems and roots of poplar.
Tree Physiol,2002,22(10):717-724
|
CSCD被引
7
次
|
|
|
|
6.
Carilloa P. Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity.
Funct Plant Biol,2005,32(3):209-219
|
CSCD被引
3
次
|
|
|
|
7.
Cruz C. How does glutamine synthetase activity determine plant tolerance to ammonium?.
Planta,2006,223:1068-1080
|
CSCD被引
14
次
|
|
|
|
8.
Filella I. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis.
Crop Sci,1995,35(5):1400-1405
|
CSCD被引
58
次
|
|
|
|
9.
Guidi L. Growth and photosynthesis of Lycopersicon esculentum (L.) plants as affected by nitrogen deficiency.
Biol Plantarum,1997,40(2):235-244
|
CSCD被引
5
次
|
|
|
|
10.
Haro R. Genetic basis of sodium exclusion and sodium tolerance in yeast. A model for plants.
Physiol Plant,1993,89:868-874
|
CSCD被引
14
次
|
|
|
|
11.
Hessini K. Interactive effects of salinity and nitrogen forms on plant growth,photosynthesis and osmotic adjustment in maize.
Plant Physiol Bioch,2019,139:171-178
|
CSCD被引
10
次
|
|
|
|
12.
Hessini K. Role of ammonium to limit nitrate accumulation and to increase water economy in Wild Swiss chard.
J Plant Nutr,2009,32:821-836
|
CSCD被引
1
次
|
|
|
|
13.
Kaiser W M. Post-translational regulation of nitrate reductase: mechanism,physiological relevance and environmental triggers.
J Exp Bot,2001,52(363):1981-1989
|
CSCD被引
32
次
|
|
|
|
14.
Liang W J. Plant salttolerance mechanism: A review.
Biochem Biophy Res Comm,2018,495(1):286-291
|
CSCD被引
81
次
|
|
|
|
15.
Liu X P. Effects of soil water and nitrogen availability on photosynthesis and water use efficiency of Robinia pseudoacacia seedlings.
J Environ Sci-Chin,2013,25(3):585-595
|
CSCD被引
16
次
|
|
|
|
16.
Meloni D A. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress.
Environ Exp Bot,2003,49(1):69-76
|
CSCD被引
151
次
|
|
|
|
17.
Muchate N S. Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance.
Bot Rev,2016,82(4):371-406
|
CSCD被引
30
次
|
|
|
|
18.
Munns R. Approaches to increasing the salt tolerance of wheat and other cereals.
J Exp Bot,2006,57:1025-1043
|
CSCD被引
62
次
|
|
|
|
19.
Munns R. Mechanisms of salinity tolerance.
Ann Rev Plant Biol,2008,59:651-681
|
CSCD被引
778
次
|
|
|
|
20.
Negrao S. Evaluating physiological responses of plants to salinity stress.
Ann Bot,2017,119(1):1-11
|
CSCD被引
18
次
|
|
|
|
|