Ti-22Al-23Nb-1Mo-1Zr合金环锻件组织演变及力学行为
Microstructure evolution and mechanical behavior of Ti-22Al-23Nb-1Mo-1Zr alloy ring forging
查看参考文献34篇
文摘
|
以五元系Ti_2AlNb合金Ti-22Al-23Nb-1Mo-1Zr(原子分数/%)环锻件为研究对象,借助扫描电子显微镜(SEM)、透射电子显微镜(TEM)和力学性能检测设备,研究合金在不同固溶温度(850,880,900℃)+750℃时效处理工艺下的组织演变、拉伸性能及断裂行为。结果表明:固溶处理后,随固溶温度的增加,细片层O相易固溶于B2相基体中,粗片层O相逐渐粗化,O相体积分数下降;后经时效处理后,有少量细片层O相从B2相基体中析出,粗片层O相进一步粗化,O相体积分数趋于一致;合金强度随固溶温度增加呈下降趋势,而塑性呈上升趋势;拉伸断口形貌为典型解理和韧窝混合断裂的准解理特征,纵向断口存在微裂纹、滑移特征以及沿拉伸方向伸长的弯曲片层O相;位错在B2/O相界塞积,片层O相尺寸细小,能够有效减小位错滑移距离,使得合金强化作用较强。 |
其他语种文摘
|
The microstructure evolution,tensile properties and fracture behavior of five-element Ti_2AlNb alloy Ti-22Al-23Nb-1Mo-1Zr (atom fraction/%)ring forging at different solution temperatures of 850,880,900℃and 750℃aging treatment(AT)were studied by scanning electron microscope(SEM),transmission electron microscopy(TEM)and mechanical testing machines.The results show that with the increase of solution temperature,the fine lamellar O phase is more soliddissolved into the B2phase matrix,the coarse lamellar O phase gradually becomes coarser and the volume fraction of O phase decreases after solution treatment(ST).After ST+AT,a very small amount of fine lamellar O phase precipitates from the B2 phase matrix at a higher solution temperature,coarse lamellar O phase is coarsened,the volume fraction of O phase tends to be the same.The tensile strength of the alloy decreases,while the ductility increases with the increase of solution temperature.The tensile fracture morphology is a quasi cleavage characteristic of typical cleavage and dimple mixed fracture.There are microcracks,slip characteristics and the bending O phase elongated along tensile direction in the longitudinal fracture.Dislocations distribute along the B2/O phase boundary.The small size of the lamellar O phase can effectively reduce the dislocation slip distance,resulting in strong strengthening effect. |
来源
|
材料工程
,2022,50(4):147-155 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000590
|
关键词
|
Ti-22Al-23Nb-1Mo-1Zr合金
;
固溶温度
;
组织演变
;
拉伸性能
;
断裂行为
|
地址
|
中国航发北京航空材料研究院, 先进钛合金航空重点实验室, 北京, 100095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家重大科技专项
;
中国航发自主创新专项资金项目
|
文献收藏号
|
CSCD:7208415
|
参考文献 共
34
共2页
|
1.
Pollock T M. Alloy design for aircraft engines.
Nature Materials,2016,15(8):809-815
|
CSCD被引
84
次
|
|
|
|
2.
蔡建明. 航空发动机用600℃高温钛合金的研究与发展.
材料导报,2005,19(1):50-53
|
CSCD被引
46
次
|
|
|
|
3.
Kumpfert J. Intermetallic alloys based on orthorhombic titanium aluminide.
Advanced Engineering Materials,2001,3(11):851-864
|
CSCD被引
43
次
|
|
|
|
4.
Banerjee D. A new ordered orthorhombic phase in a Ti_3Al-Nb alloy.
Acta Metallurgica,1988,36(4):871-882
|
CSCD被引
104
次
|
|
|
|
5.
Banerjee D. The intermetallic Ti_2AlNb.
Progress in Materials Science,1997,42:135-158
|
CSCD被引
43
次
|
|
|
|
6.
Yang J L. Microstructure evolution and mechanical properties of P/M Ti-22Al-25Nb alloy during hot extrusion.
Materials Science & Engineering:A,2017,699:210-216
|
CSCD被引
3
次
|
|
|
|
7.
Li S Q. Recent work on alloy and process development of Ti_2AlNb based alloys.
Materials Science Forum,2005,475/479:795-800
|
CSCD被引
3
次
|
|
|
|
8.
冯艾寒. Ti_2AlNb基合金的研究进展.
材料与冶金学报,2011,10(1):30-38
|
CSCD被引
41
次
|
|
|
|
9.
Zhang H Y. Phase transformation and microstructure control of Ti_2AlNb-based alloys:a review.
Journal of Materials Science and Technology,2020,80:203-216
|
CSCD被引
10
次
|
|
|
|
10.
Williams J C. Progress in structural materials for aerospace systems.
Acta Materialia,2003,51(19):5775-5799
|
CSCD被引
441
次
|
|
|
|
11.
刘石双. Ti60钛合金室温保载疲劳性能及断裂行为.
材料工程,2019,47(7):112-120
|
CSCD被引
3
次
|
|
|
|
12.
Zhang H Y. Static coarsening behavior of apre-deformed Ti_2AlNb-based alloy during heat treatment.
Vacuum,2019,169:1-8
|
CSCD被引
4
次
|
|
|
|
13.
Emura S. B_2grain size refinement and its effect on room temperature tensile properties of a Ti-22Al-27Nb orthorhombic intermetallic alloy.
Scripta Materialia,2003,48(5):629-634
|
CSCD被引
23
次
|
|
|
|
14.
Peng J H. Tensile properties and fracture behavior of Ti?2-AlNb based alloys at room temperature.
Transactions of Nonferrous Metals Society of China,2000,10(3):378-381
|
CSCD被引
4
次
|
|
|
|
15.
Li S Q. Effect of microstructure on tensile properties and fracture behavior of intermetallic Ti_2AlNb alloys.
Transactions of Nonferrous Metals Society of China,2002,12(4):582-586
|
CSCD被引
14
次
|
|
|
|
16.
Cowen C J. Microstructure,creep,and tensile behavior of a Ti-21Al-29Nb(at.%)orthorhombic+B2alloy.
Intermetallics,2006,14(4):412-422
|
CSCD被引
18
次
|
|
|
|
17.
Wang W. Quantitative analysis of the effect of heat treatment on microstructural evolution and microhardness of an isothermally forged Ti-22Al-25Nb(at.%)orthorhombic alloy.
Intermetallics,2014,45:29-37
|
CSCD被引
17
次
|
|
|
|
18.
Zheng Y P. Fracture toughness of the bimodal size lamellar O phase microstructures in Ti-22Al-25Nb (at.%)orthorhombic alloy.
Journal of Alloys and Compounds,2017,709:511-518
|
CSCD被引
11
次
|
|
|
|
19.
Wang W. Designed bimodal size lamellar O microstructures in Ti_2AlNb based alloy:microstructural evolution,tensile and creep properties.
Materials Science &Engineering:A,2014,618(17):288-294
|
CSCD被引
15
次
|
|
|
|
20.
Boehlert C J. PartⅠ.The microstructural evolution in Ti-Al-Nb O+ Bcc orthorhombic alloys.
Metallurgical & Materials Transactions A,1999,30(9):2305-2323
|
CSCD被引
59
次
|
|
|
|
|