固态电解质中的聚合物复合体系研究进展
Research progress of polymer composite system in solid electrolyte
查看参考文献146篇
文摘
|
固态聚合物电解质因其质量轻、柔性好,且与电极材料接触良好、界面阻抗小,成为开发新一代高能量密度、高安全性乃至高柔韧性电化学器件的潜在材料,近年来获得了广泛关注。但因其离子电导率低、力学性能差等缺陷也成为限制其进一步商业化的关键问题。通过交联、共混、共聚等手段组成聚合物的复合体系有可能很好地解决这些问题,因此本文首先对聚合物中的离子导电机理进行了简要介绍,旨在从原理的角度阐释上述问题的解决策略;随后综述了近年来多种聚合物基复合电解质在电化学器件中的应用以及改性策略。最后对复合固态聚合物电解质目前面临的基础研究和实际应用问题进行了讨论,给出了解决这些问题的建议,以期为新型聚合物复合固态电解质的设计与制备提供新思路。 |
其他语种文摘
|
Because of its light weight,flexibility,and good contact with electrode,solid polymer electrolyte(SPE)has become a potential material for the development of electrochemical devices with high energy density,high safety and high flexibility,and has been paid extensive attention in recent years.However,defects such as low ionic conductivity and poor mechanical properties have also become the problems that limit its further commercialization.It is possible to solve these problems by forming a composite system of polymers by means of crosslinking,blending,copolymerization,etc. Therefore,in this paper,the mechanism of ionic conductivity in polymers was briefly introduced in order to explain the strategies to solve the above problems from the point of principle.Then,the applications and modification strategies of a variety of polymer-based composite electrolytes in electrochemical devices in recent years were reviewed.Finally,the problems of basic research and practical application faced currently by the composite SPEs were discussed and the solutions to these problems were given.It is hoped that this review can provide ideas for the design and preparation of future composite SPEs. |
来源
|
材料工程
,2022,50(4):15-35 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000442
|
关键词
|
固态电解质
;
聚合物
;
复合体系
;
结构
;
性能
|
地址
|
西安交通大学化学学院, 西安, 710049
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7208402
|
参考文献 共
146
共8页
|
1.
邵勤思. 铅酸蓄电池的发展、现状及其应用.
自然杂志,2017,39(4):258-264
|
CSCD被引
4
次
|
|
|
|
2.
葛性波. 锂金属电池中复合固态电解质与负极界面的研究进展.
材料工程,2021,49(6):33-43
|
CSCD被引
1
次
|
|
|
|
3.
Ma W. Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density.
Carbon,2017,113:151-158
|
CSCD被引
12
次
|
|
|
|
4.
Armand M. Polymersolidelectrolytes-an overview.
Solid State Ionics,1983,9/10:745-754
|
CSCD被引
21
次
|
|
|
|
5.
李杨. 固态电池研究进展.
电源技术,2019,43(7):1085-1089
|
CSCD被引
3
次
|
|
|
|
6.
徐玲.
PEO/PVA聚合物固态电解质的制备、改性及电化学性能的研究,2020
|
CSCD被引
1
次
|
|
|
|
7.
Yao P. Review on polymer-based composite electrolytes for lithium batteries.
Frontiers in Chemistry,2019,7(522)
|
CSCD被引
1
次
|
|
|
|
8.
Ye T. Recent progress in solid electrolytes for energy storage devices.
Advanced Functional Materials,2020,30(29):2000077
|
CSCD被引
14
次
|
|
|
|
9.
Nguyen H D. Nanostructured multiblock copolymer single-ion conductors for safer high-performance lithium batteries.
Energy &Environmental Science,2018,11(11):3298-3309
|
CSCD被引
12
次
|
|
|
|
10.
Wu N. Fast Li~+conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte.
Journal of the American Chemical Society,2020,142(5):2497-2505
|
CSCD被引
32
次
|
|
|
|
11.
Capuano F. Composite polymer electrolytes.
Journal of the Electrochemical Society,1991,138(7):1918-1922
|
CSCD被引
15
次
|
|
|
|
12.
Duan H. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers.
Journal of the American Chemical Society,2018,140(1):82-85
|
CSCD被引
42
次
|
|
|
|
13.
Petrov P. Highmolecular-weight polyoxirane copolymers and their use in highperformance dye-sensitized solar cells.
Macromolecular Materials and Engineering,2008,293(7):598-604
|
CSCD被引
2
次
|
|
|
|
14.
Farooqui U R. Effect of polyaniline(PANI)on poly(vinylidene fluoride-co-hexaflouro propylene)(PVDF-co-HFP)polymer electrolyte membrane prepared by breath figure method.
Polymer Testing,2017,60:124-131
|
CSCD被引
2
次
|
|
|
|
15.
Lehmann M L. Well-designed crosslinked polymer electrolyte enables high ionic conductivity and enhanced salt solvation.
Journal of the Electrochemical Society,2020,167(7):8
|
CSCD被引
1
次
|
|
|
|
16.
Yang J M. evaluation of membrane preparation method on the performance of alkaline polymer electrolyte:comparison between poly(vinyl alcohol)/chitosan blended membrane and poly(vinyl alcohol)/chitosan electrospun nanofiber composite membranes.
Electrochimica Acta,2018,266:332-340
|
CSCD被引
1
次
|
|
|
|
17.
Mathew C M. Electrochemical analysis on poly(ethyl methacrylate)-based electrolyte membranes.
Bulletin of Materials Science,2015,38(1):151-156
|
CSCD被引
1
次
|
|
|
|
18.
Sivaraj P. Free-standing, high Li-ion conducting hybrid PAN/PVDF/LiClO_4/Li_(0.5) La_(0.5)TiO_3nanocomposite solid polymer electrolytes for all-solidstate batteries.
Journal of Solid State Electrochemistry,2021,25(3):905-917
|
CSCD被引
2
次
|
|
|
|
19.
Zheng Y. A review of composite solidstate electrolytes for lithium batteries:fundamentals,key materials and advanced structures.
Chemical Society Reviews,2020,49(23):8790-8839
|
CSCD被引
42
次
|
|
|
|
20.
丁黎明. 无定形梳状高分子固体电解质的二重玻璃化转变及典型VTF特征.
高等学校化学学报,1996(10):1644-1648
|
CSCD被引
3
次
|
|
|
|
|