柔性储能电池电极的设计、制备与应用
Design,preparation and application of electrodes for flexible energy storage batteries
查看参考文献50篇
文摘
|
随着便携式、可穿戴电子器件的迅速发展,柔性储能器件的研究逐渐转向微型化、轻柔化和智能化等方向。同时人们对器件的能量密度、功率密度和力学性能有了更高的要求。电极材料作为柔性储能器件的核心部分,是决定器件性能的关键。柔性储能电子器件的发展,又迫切需要新型电池技术和快速、低成本且可精准控制其微结构的制备方法。因此,柔性锂/钠离子电池、柔性锂硫电池、柔性锌空电池等新型储能器件的研发成为目前学术界研究的热点。本文论述了近年来柔性储能电池电极的研究现状,着重对柔性电极材料的设计(独立柔性电极和柔性基底电极)、不同维度柔性电极材料的制备工艺(一维材料、二维材料和三维材料)和柔性储能电极的应用(柔性锂/钠离子电池、柔性锂硫电池、柔性锌空电池)进行对比分析,并对电极材料的结构特性和电化学性能进行了讨论。最后,指出了柔性储能器件目前所面临的问题,并针对此类问题展望了柔性储能器件未来的重点在于新型固态电解质的研发、器件结构的合理设计及封装技术的不断优化。 |
其他语种文摘
|
With the rapid development of portable and wearable electronic devices,research on flexible energy storage devices has gradually shifted to the directions of miniaturization,softness and intelligence.At the same time,people have higher requirements for the energy density,power density and mechanical properties of the device.As the core part of flexible energy storage devices,electrode material is the key to determining device performance.With the development of flexible energy storage electronic devices,there is an urgent need for new battery technology and fast,low cost and precise control of their microstructure preparation methods.Therefore,the research and development of new energy storage devices such as flexible lithium/sodium-ion batteries,flexible lithium-sulfur batteries,and flexible zinc-air batteries have become the current research hotspots in academia.The current research status of flexible energy storage battery electrodes in recent years was discussed in this paper,the design of flexible electrode materials (independent flexible electrodes and flexible substrate electrodes),and the preparation process of flexible electrode materials of different dimensions(one-dimensional materials,two-dimensional materials and three-dimensional materials) and applications of flexible energy storage electrodes(flexible lithium/sodium ion batteries,flexible lithium-sulfur batteries,flexible zinc-air batteries)were compared and analyzed,and the structural characteristics and electrochemical properties of electrode materials were discussed.Finally,the current problems faced by flexible energy storage devices were pointed out,and the future focus of flexible energy storage devices was the research and development of new solid electrolytes,the rational design of device structures and the continuous optimization of packaging technology. |
来源
|
材料工程
,2022,50(4):1-14 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000512
|
关键词
|
柔性
;
储能器件
;
电极设计
;
可穿戴设备
;
制备工艺
|
地址
|
西北工业大学化学与化工学院, 西安, 710129
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
电工技术 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7208401
|
参考文献 共
50
共3页
|
1.
Li H. Flexible sodium-ion based energy storage devices:recent progress and challenges.
Energy Storage Materials,2020,26:83-104
|
CSCD被引
9
次
|
|
|
|
2.
Verma S. Enhanced electrochemical performance of copper oxide nanobeads a potential electrode material for energy storage devices.
Chemical Physics Letters,2020,749:137472
|
CSCD被引
2
次
|
|
|
|
3.
Wang D. Energy density issues of flexible energy storage devices.
Energy Storage Materials,2020,28:264-292
|
CSCD被引
16
次
|
|
|
|
4.
Wang R H. Boosting lithium storage in free-standing black phosphorus anode via multifunction of nanocellulose.
ACS Applied Materials &Interfaces,2020,12(28):31628-31636
|
CSCD被引
3
次
|
|
|
|
5.
Guo W. Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries.
Carbon,2019,152:888-897
|
CSCD被引
10
次
|
|
|
|
6.
Ali S. Three-dimensional twisted fiber composite as high-loading cathode support for lithium sulfur batteries.
Composites Part B:Engineering,2019,174:107025
|
CSCD被引
3
次
|
|
|
|
7.
Kaiser M R. Electro-polymerized polypyrrole film for fabrication of flexible and slurry-free polypyrrole-sulfur-polypyrrole sandwich electrode for the lithium-sulfur battery.
Journal of Power Sources,2019,437:226925
|
CSCD被引
3
次
|
|
|
|
8.
Wang J G. Highly flexible graphene/Mn_3O_4nanocomposite membrane as advanced anodes for Li-ion batteries.
ACS Nano,2016:6227-6234
|
CSCD被引
17
次
|
|
|
|
9.
Wang X W. An integrated freestanding flexible electrode with holey-structured 2D bimetallic phosphide nanosheets for sodium-ion batteries.
Advanced Functional Materials,2018,28(26):1801016
|
CSCD被引
8
次
|
|
|
|
10.
Lee C S. Direct growth of highly organized,2D ultra-thin nano-accordion Ni-MOF@ NiS_2 @C core-shell for high performance energy storage device.
Chemical Engineering Journal,2020,406:126810
|
CSCD被引
4
次
|
|
|
|
11.
Yin D. Free-standing 3Dnitrogen-carbon anchored Cu nanorod arrays:in situ derivation from a metal-organic framework and strategy to stabilize lithium metal anodes.
Journal of Materials Chemistry A,2020,8(3):1425-1431
|
CSCD被引
3
次
|
|
|
|
12.
Wang Y. A free-standing CeO_2/Co_3O_4nanowires electrode featuring a controllable discharge/charge product evolution route with enhanced catalytic performance for Li-O_2batteries.
Applied Materials Today,2020,19:100603
|
CSCD被引
4
次
|
|
|
|
13.
Zhou Y. Evaporation induced uniform polypyrrole coating on CuO arrays for free-standing high lithium storage anode.
Journal of Solid State Electrochemistry,2019,23(6):1829-1836
|
CSCD被引
1
次
|
|
|
|
14.
Fang Y Z. Induction of planar sodium growth on MXene(Ti_3C_2T_x)-modified carbon cloth hosts for flexible sodium metal anodes.
ACS Nano,2020,14(7):8744-8753
|
CSCD被引
9
次
|
|
|
|
15.
Lu Q. Direct growth of ordered Ndoped carbon nanotube arrays on carbon fiber cloth as a freestanding and binder-free air electrode for flexible quasi-solidstate rechargeable Zn-air batteries.
Carbon Energy,2020,2(3):461-471
|
CSCD被引
9
次
|
|
|
|
16.
Wang C. Hollow rutile cuboid arrays grown on carbon fiber cloth as a flexible electrode for sodium-ion batteries.
Advanced Functional Materials,2020,30(45):2002629
|
CSCD被引
10
次
|
|
|
|
17.
Wang C. Spherical vanadium phosphate particles grown on carbon fiber cloth as flexible anode for high-rate Li-ion batteries.
Chemical Engineering Journal,2020,386:123981
|
CSCD被引
4
次
|
|
|
|
18.
Luo G. Freestanding polypyrrole nanotube/reduced graphene oxide hybrid film as flexible scaffold for dendrite-free lithium metal anodes.
Journal of Energy Chemistry,2021,58:285-291
|
CSCD被引
5
次
|
|
|
|
19.
Vigolo B. Macroscopic fibers and ribbons of oriented carbon nanotubes.
Science,2000,290(5495):1331-1334
|
CSCD被引
75
次
|
|
|
|
20.
Li Q X. Controlled design of a robust hierarchically porous and hollow carbon fiber textile for high-performance freestanding electrodes.
Advanced Science,2019,6(21):1900762
|
CSCD被引
3
次
|
|
|
|
|