近三十年青藏高原内流区湖泊岸线形态的时空演变
Spatiotemporal changes of lake shoreline morphology in Tibetan Plateau during 1990-2018
查看参考文献51篇
文摘
|
湖泊岸线形态是描述和定量表达湖泊空间分布特征的重要维度。近年来,受气候暖湿化影响,青藏高原内流区湖泊总体呈现快速扩张趋势,湖泊的动态变化不仅体现在面积、水位、水量等水文参数上,还引起湖泊形态的显著变化。基于多期湖泊分布数据,结合分形和景观生态学理论,构建了湖泊岸线形态特征量化的指标体系,对1990年以来,青藏高原内流区湖泊岸线形态的时空变化特征及其影响因素进行定量分析。结果表明:①近三十年来青藏高原内流区湖泊的分形维数和岸线发育系数总体呈上升趋势,湖泊的近圆率在此期间呈下降趋势,湖泊长宽比指数则无明显变化。②青藏高原内流区湖泊岸线形态的总体演变特征受到地质构造的控制,体现出一定空间自相关性,断陷湖区的湖泊岸线形态及其变化要明显复杂于坳陷湖区。区域湖泊岸线的变化幅度大致从东北向西南递减,变化幅度在可可西里地区、羌塘高原中部以及羌塘高原东南部3个区域存在空间自相关性。③湖泊岸线形态的变化受岸线周边的地形影响,湖滨地形落差较大的区域,湖泊岸线相对稳定,变化速度较慢。岸线指数的变化量与岸线周边1 km缓冲区内的平均高差存在幂函数关系。④该区域湖泊岸线形态的变化和湖泊面积的变化幅度也存在一定相关性,当湖泊处于扩张阶段时,湖泊的分形维数和岸线发育系数总体呈现增加趋势,反之减少。本研究揭示了气候暖湿化背景下青藏高原内流区湖泊岸线形态的变化格局与影响特征,讨论了湖泊岸线形态及其变化格局与湖区的地质构造,气候与水文等多个要素间的关系,丰富了湖泊动态变化研究的视角与方法,为深入理解青藏高原湖泊对气候变化的响应特征,监测湖泊变化对湖盆地貌、水系连通度以及湖滨带生态环境等影响提供了科学参考。 |
其他语种文摘
|
Lake shoreline morphology is an important dimension to describe and quantitatively express the spatial distribution characteristics of lakes. In recent years, affected by climate warming and humidification, lakes in the interior drainage area of the Tibetan Plateau generally showed a rapid expansion. The dynamic changes of lakes are reflected in lake hydrological parameters, including area, water level and water volume, and cause significant changes in lake morphology. Based on multi- period lake distribution data, we construct a quantitative index system of lake shoreline morphology by combining the fractal and landscape ecology theory, and quantitatively analyzes the spatiotemporal variation characteristics of lake shoreline morphology and its influencing factors in the interior drainage area of the Tibetan Plateau since 1990. The results show that: (1) In the last 30 years, the fractal dimension and shoreline development index of lakes in the study area have shown an increasing trend, while the circularity ratio has shown a decreasing trend during this period, and the aspect ratio has not changed significantly. (2) The overall characteristics of lake shoreline are determined by geological structure. The lake shoreline and its changes in the fault lake area are obviously more complex than those in the depression lake area. The rangeability of lake shoreline in the area roughly descends from northeast to southwest, showing spatial auto-correlation in the Hoh Xil region, and central and southeastern Qiangtang Plateau. (3) There is a certain correlation between the change of lake shoreline and the change of lake area. When the lake is in the state of expansion, the fractal dimension and shoreline development index of the lake will increase, and vice versa. (4) The variation of the lake shoreline is affected by the landforms around. In the area with a large drop of lakeside terrain, the lake shoreline is relatively stable and the change speed is low. The variation of shoreline has a power function relationship with the average elevation difference in the buffer zone of 1 kilometer around the shoreline. This study reveals the change patterns and influence characteristics of lake shoreline morphology in the interior drainage area of the Tibetan Plateau under the influence of climate warming and humidification, discusses the relationship between the shoreline and its change pattern and the geological structure, climate and hydrology, modifies the methods of studies on dynamic change in lakes, and provides a new scientific perspective for thoroughly understanding the response of the Tibetan lakes to climate change and monitoring the impact of lake changes on hydrogeomorphic features. |
来源
|
地理研究
,2022,41(4):980-996 【核心库】
|
DOI
|
10.11821/dlyj020210176
|
关键词
|
湖泊岸线形态
;
青藏高原内流区
;
湖泊变化
;
分形维数
;
景观格局指数
|
地址
|
1.
中国科学院南京地理与湖泊研究所, 中国科学院流域地理学重点实验室, 南京, 210008
2.
南京师范大学地理科学学院, 南京, 210023
3.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0585 |
学科
|
大气科学(气象学);自然地理学 |
基金
|
中国科学院战略性先导科技专项
;
第二次青藏高原综合科学考察研究项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:7207164
|
参考文献 共
51
共3页
|
1.
徐昔保. 湖泊湿地生态系统服务研究进展.
生态学报,2018,38(20):7149-7158
|
CSCD被引
14
次
|
|
|
|
2.
Xu X. Lake-wetland ecosystem services modeling and valuation: Progress, gaps and future directions.
Ecosystem Services,2018,33:19-28
|
CSCD被引
9
次
|
|
|
|
3.
秦伯强. 湖泊富营养化及其生态系统响应.
科学通报,2013,58(10):855-864
|
CSCD被引
114
次
|
|
|
|
4.
李云良. 鄱阳湖湖泊流域系统水文水动力联合模拟.
湖泊科学,2013,25(2):227-235
|
CSCD被引
16
次
|
|
|
|
5.
Maberly S C. Global lake thermal regions shift under climate change.
Nature Communications,2020,11(1):1681-1694
|
CSCD被引
5
次
|
|
|
|
6.
Wang W. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate.
NAT GEOSCI,2018,11(6):410-414
|
CSCD被引
20
次
|
|
|
|
7.
马荣华. 中国湖泊的数量、面积与空间分布.
中国科学:地球科学,2011,41(3):394-401
|
CSCD被引
137
次
|
|
|
|
8.
王苏民.
中国湖泊志,1998
|
CSCD被引
456
次
|
|
|
|
9.
中国科学院南京地理与湖泊研究所.
中国湖泊调查报告,2019
|
CSCD被引
31
次
|
|
|
|
10.
宋春桥. 湖泊水情遥感研究进展.
湖泊科学,2020,32(5):1406-1420
|
CSCD被引
18
次
|
|
|
|
11.
Pekel J F. High-resolution mapping of global surface water and its long-term changes.
Nature,2016,540(7633):418-422
|
CSCD被引
252
次
|
|
|
|
12.
Gorelick N. Google Earth Engine: Planetary-scale geospatial analysis for everyone.
Remote sensing of Environment,2017,202:18-27
|
CSCD被引
357
次
|
|
|
|
13.
刘蕾. 基于遥感与GIS的中国湖泊形态分析.
国土资源遥感,2015,27(3):92-98
|
CSCD被引
11
次
|
|
|
|
14.
李新国. 近30年来太湖流域湖泊岸线形态动态变化.
湖泊科学,2005(4):294-298
|
CSCD被引
15
次
|
|
|
|
15.
祁苗苗. 1973-2018年青海湖岸线动态变化.
湖泊科学,2020,32(2):573-586
|
CSCD被引
20
次
|
|
|
|
16.
Song C. Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes?.
Water Resources Research,2014,50(4):3170-3186
|
CSCD被引
41
次
|
|
|
|
17.
朱立平. 青藏高原最近40年湖泊变化的主要表现与发展趋势.
中国科学院院刊,2019,34(11):1254-1263
|
CSCD被引
35
次
|
|
|
|
18.
万玮. 卫星遥感监测近30年来青藏高原湖泊变化.
科学通报,2014,59(8):701-714
|
CSCD被引
54
次
|
|
|
|
19.
Zhang G. A robust but variable lake expansion on the Tibetan Plateau.
Science Bulletin,2019,64(18):1306-1309
|
CSCD被引
53
次
|
|
|
|
20.
朱立平. 全球变化下青藏高原湖泊在地表水循环中的作用.
湖泊科学,2020,32(3):597-608
|
CSCD被引
24
次
|
|
|
|
|