双组元液体动力环境下3DC/SiC复合材料喷管烧蚀性能
Ablation performance of 3DC/SiC composite nozzles under double-component liquid power environment
查看参考文献20篇
文摘
|
为明确C/SiC陶瓷基复合材料喷管在液体火箭发动机工作环境的烧蚀特性,采用先驱体浸渍-裂解(PIP)工艺制备得到3DC/SiC复合材料喷管,并对喷管进行多种工况环境下的地面热试车烧蚀考核。结果表明:制备得到的3DC/ SiC复合材料喷管能够满足液体火箭发动机多种工况环境下抗烧蚀性能要求,喷管喉部线烧蚀率约为3.92×10~(-4)mm/s;热试车烧蚀实验后喷管入口圆柱段、收敛段、喉部及扩张段外型面均残留有大量白色物质SiO_2,喉部局部出现烧蚀坑洞现象;C/SiC复合材料液体火箭发动机工作环境下的烧蚀机理为机械冲刷烧蚀和氧化烧蚀。 |
其他语种文摘
|
In order to explore the ablation characteristics of C/SiC ceramic composite nozzles in the working environment of liquid rocket engines,3D C/SiC composite nozzle was prepared by the precursor impregnation pyrolysis(PIP)process,and the ablation test of the nozzle in various working conditions was carried out.The results show that 3D C/SiC composite nozzle can meet the requirements of anti-ablation performance of the liquid rocket engine under various working conditions.The wire ablation rate of nozzle throat is about 3.92×10~(-4)mm/s;after the hot test vehicle ablation test,a large amount of white matter SiO_2 remains on the inlet cylindrical section,convergent section,throat section and expansion section outer surface of the nozzle,and the ablation pit appears in the throat;the ablation mechanisms of C/SiC composites under liquid rocket engine are mainly mechanical erosion ablation and oxidation ablation. |
来源
|
材料工程
,2022,50(2):118-126 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000641
|
关键词
|
3DC/SiC复合材料
;
喷管
;
液体动力环境
;
烧蚀性能
;
烧蚀机理
|
地址
|
1.
西北工业大学, 西安, 710072
2.
西安航天动力研究所, 西安, 710010
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7201680
|
参考文献 共
20
共1页
|
1.
刘巧沐. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战.
材料工程,2019,47(2):1-10
|
CSCD被引
57
次
|
|
|
|
2.
马晓康. 碳化硅陶瓷基复合材料的自愈合及结构吸波一体化研究进展.
航空材料学报,2018,38(5):1-9
|
CSCD被引
9
次
|
|
|
|
3.
Savino R. Testing ultra-high-temperature ceramics for thermal protection and rocket applications.
Advances in Applied Ceramics,2018,117(Suppl 1):9-18
|
CSCD被引
3
次
|
|
|
|
4.
Schmidt S. Ceramic matrix composites: a challenge in space-propulsion technology applications.
International Journal of Applied Ceramic Technology,2005,2(2):85-96
|
CSCD被引
4
次
|
|
|
|
5.
Tang S F. Design, Preparation and Properties of Carbon Fiber Reinforced Ultra-High Temperature Ceramic Composites for Aerospace Applications: A Review.
Journal of Materials Science & Technology,2017,33(2):117-130
|
CSCD被引
68
次
|
|
|
|
6.
潘育松. 2D C/SiC复合材料烧蚀性能分析.
兵器材料科学与工程,2006,29(1):17-20
|
CSCD被引
17
次
|
|
|
|
7.
聂景江. 化学气相渗透法制备三维针刺C/SiC复合材料的烧蚀性能.
硅酸盐学报,2006,34(10):1238-1242
|
CSCD被引
14
次
|
|
|
|
8.
Liu T Y. Microstructure and mechanical performance evolution of C/C-ZrC composites exposed to oxyacetylene flame.
Ceramics International,2021,47(16):22654-22661
|
CSCD被引
2
次
|
|
|
|
9.
Huo C X. Microstructure and ablation mechanism of SiC-ZrC-Al2O_3coating for SiC coated C/C composites under oxyacetylene torch test.
Journal of Alloys and Compounds,2018,735(1):914-927
|
CSCD被引
5
次
|
|
|
|
10.
赵东林. 再入大气环境的等效实验模拟方法.
航空制造技术,2007(5):87-89
|
CSCD被引
2
次
|
|
|
|
11.
Wang S L. Microstructure and ablation mechanism of C/C-ZrC-SiC composites in a plasma flame.
Ceramics International,2017,43(14):10661-10667
|
CSCD被引
10
次
|
|
|
|
12.
Luo L. Ablation behavior of C/SiC-HfC composites in the plasma wind tunnel.
Journal of the European Ceramic Society,2016,36(15):3801-3807
|
CSCD被引
9
次
|
|
|
|
13.
何洪庆. 固体发动机喷管烧蚀和温度场测量.
固体火箭技术,1993(3):31-36
|
CSCD被引
12
次
|
|
|
|
14.
严波.
PIP法制备碳纤维增强碳化硅复合材料及其烧蚀性能的研究,2008
|
CSCD被引
2
次
|
|
|
|
15.
Fan X M. Processing,microstructure and ablation behavior of C/SiC-Ti_3SiC_2 composites fabricated by liquid silicon infiltration.
Corros Sci,2013,74:98-105
|
CSCD被引
6
次
|
|
|
|
16.
罗磊.
C/SiC及其改性复合材料在等离子风洞中的烧蚀行为研究,2018
|
CSCD被引
2
次
|
|
|
|
17.
康文杰. 反应熔渗工艺制备的C/C-SiC复合材料烧蚀性能及构件研制.
固体火箭技术,2019,42(4):519-522
|
CSCD被引
2
次
|
|
|
|
18.
Mohana A. High temperature oxidation behaviour of CVDβ-SiC seal coated SiCf/SiC composites in static dry air and combustion environment.
Ceramics International,2017,43(12):9472-9480
|
CSCD被引
3
次
|
|
|
|
19.
Opila E J. Oxidation of chemically-vapordeposited silicon carbide in carbon dioxide.
J Am Ceram Soc,1998,81(7):1949-1952
|
CSCD被引
3
次
|
|
|
|
20.
Opila E J. SiC recession caused by SiO_2scale volatility under combustion conditions:Ⅱ, thermodynamics and gaseous-diffusion model.
J Am Ceram Soc,1999,82(7):1826-1834
|
CSCD被引
16
次
|
|
|
|
|