氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性
Construction and capacitive performance of N-doped carbon nanofiber coated graphene nanosheets
查看参考文献21篇
文摘
|
以石墨烯纳米片为骨架,聚吡咯为碳源,设计构建氮掺杂碳纤维包覆石墨烯纳米片(NFGNs)复合材料。采用SEM,XRD,Raman,FTIR,XPS和BET对材料进行表征,结果表明:相互连通的氮掺杂碳纳米纤维均匀地包覆生长在石墨烯纳米片层表面;NFGNs-800复合材料的氮原子分数为11.53%,比表面积为477.65 m~2·g~(-1)。电容特性测试结果表明:NFGNs-800电极材料的比电容为323.3F·g~(-1)(1.0A·g~(-1)),且具有良好的倍率特性;NFGNs-800超级电容器在功率密度为10500W·kg~(-1)时,能量密度为87.1Wh·kg~(-1);经过10000次恒流充放电循环后,比电容保持率95.9%,库仑效率保持在99%以上。 |
其他语种文摘
|
The N-doped carbon nanofiber coated graphene nanosheets(NFGNs)were designed and constructed using EGNs as the skeleton and PPy as the carbon source.The samples were characterized by SEM,XRD,Raman,FTIR,XPS and BET.The results show that the interconnected N-doped carbon nanofibers are uniformly coated on the surface of EGNs.The NFGNs-800 presents high-level nitrogen atom doping of 11.53%and large specific surface area of 477.65 m~2·g~(-1).The capacitance performance test results show that the NFGNs-800 electrode material exhibits high specific capacitance of 323.3F·g~(-1)(1.0A·g~(-1))and good rate characteristic.NFGNs-800 supercapacitor shows high energy density of 87.1 Wh·kg~(-1)at power density of 10500 W·kg~(-1).The specific capacitance of the supercapacitor is 95.9%of the initial specific capacitance and the columbic efficiency still remains above 99%after 10000 constant current charge discharge cycles. |
来源
|
材料工程
,2022,50(2):94-102 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000461
|
关键词
|
石墨烯纳米片
;
氮掺杂碳纤维
;
电容特性
;
超级电容器
|
地址
|
黑龙江省科学院高技术研究院, 哈尔滨, 150020
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
化学;化学工业 |
基金
|
黑龙江省自然科学基金
;
黑龙江省科学院科学研究基金项目
|
文献收藏号
|
CSCD:7201677
|
参考文献 共
21
共2页
|
1.
Mercy R B. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications.
Chemical Society Reviews,2018,47(8):2680-2721
|
CSCD被引
52
次
|
|
|
|
2.
郑俊生. 高比能超级电容器:电极材料、电解质和能量密度限制原理.
材料工程,2020,48(9):47-58
|
CSCD被引
3
次
|
|
|
|
3.
Li P. Synthesis of highly ordered mesoporous carbons nanofiber web based on electrospinning strategy for supercapacitor.
Microporous and Mesoporous Materials,2020,305:110283
|
CSCD被引
1
次
|
|
|
|
4.
Wei Q L. Porous one-dimensional nanomaterials:design,fabrication and applications in electrochemical energy storage.
Advanced Materials,2017,29(20):1602300
|
CSCD被引
17
次
|
|
|
|
5.
He Y F. Porous carbon nanosheets:synthetic strategies and electrochemical energy related applications.
Nanotoday,2019,24:103-119
|
CSCD被引
15
次
|
|
|
|
6.
Shao H. Nanoporous carbon for electrochemical capacitive energy storage.
Chemical Society Reviews,2020,49(10):3005-3039
|
CSCD被引
26
次
|
|
|
|
7.
Wang J. From metal-organic frameworks to porous carbon materials:recent progress and prospects from energy and environmental perspectives.
Nanoscale,2020,12(7):4238-4268
|
CSCD被引
13
次
|
|
|
|
8.
Yang X. Facile construction of hierarchically porous carbon nanofiber aerogel for high-performance supercapacitor.
Journal of Applied Electrochemistry,2019,49:241-250
|
CSCD被引
2
次
|
|
|
|
9.
Li J Y. Copolymer derived micro/meso porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors.
Journal of Materials Chemistry A,2020,8(5):2463-2471
|
CSCD被引
3
次
|
|
|
|
10.
Jiang Q. Nitrogen doping polyvinylpyrrolidone-based carbon nanofibers via pyrolysis of g-C_3N_4 with tunable chemical states and capacitive energy storage.
Electrochimica Acta,2020,330:135212
|
CSCD被引
4
次
|
|
|
|
11.
Pham D T. Carbon nanotubebridged graphene 3Dbuilding blocks for ultrafast compact supercapacitors.
ACS Nano,2015,9(2):2018-2027
|
CSCD被引
17
次
|
|
|
|
12.
王瑶. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能.
材料工程,2021,49(9):51-59
|
CSCD被引
4
次
|
|
|
|
13.
Wang J. Efficient ultra-trace electrochemical detection of Cd~(2+),Pb~(2+)and Hg~(2+) based on hierarchical porous S-doped C_3N_4 tube bundles/graphene nanosheets composite.
Chemical Engineering Journal,2021,423:130317
|
CSCD被引
2
次
|
|
|
|
14.
阚侃. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性.
材料工程,2020,44(8):101-109
|
CSCD被引
2
次
|
|
|
|
15.
李诗杰. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能.
材料工程,2018,46(7):157-164
|
CSCD被引
13
次
|
|
|
|
16.
Zhao X W. Nitrogen-doped carbon networks derived from the electrospun polyacrylonitrile@ branched polyethylenimine nanofibers as flexible supercapacitor electrodes.
Journal of Alloys and Compounds,2019,808:151737
|
CSCD被引
2
次
|
|
|
|
17.
Shalini K. Unveiling high specific energy supercapacitor from layer-by-layer assembled polypyrrole/graphene oxide|polypyrrole/manganese oxide electrode material.
Scientific Reports,2019,9:4884
|
CSCD被引
4
次
|
|
|
|
18.
Rupali S M. In situsynthesis of nitrogen and sulfur enriched hierarchical porous carbon for high-performance supercapacitor.
Energy Fuels,2018,32(1):908-915
|
CSCD被引
1
次
|
|
|
|
19.
Liu S L. An effective interaction in polypyrrole/nickel phosphide(PPy/Ni_2P)for high-performance supercapacitor.
Journal of Solid State Electrochemistry,2019,23:3409-3418
|
CSCD被引
1
次
|
|
|
|
20.
He B. From polymeric carbon nitride to carbon materials:extended application to electrochemical energy conversion and storage.
Nanoscale,2020,12(16):8636-8646
|
CSCD被引
2
次
|
|
|
|
|