先进航空材料焊接过程热裂纹研究进展
Research progress of hot crack in fusion welding of advanced aeronautical materials
查看参考文献72篇
文摘
|
高焊接热裂纹敏感性是制约新一代合金材料在航空航天领域推广应用的技术瓶颈。本文分别从焊接热裂纹的产生机理和各类合金裂纹敏感性实验的角度梳理该方向的研究进展。焊接热裂纹主要包括凝固裂纹(在焊缝内部产生)和液化裂纹(在焊缝与部分熔化区交界处产生)。影响焊接热裂纹产生的因素包括材料成分、焊接热循环以及接头热应力。在梳理焊接热裂纹机理研究的基础上,分别总结了铝合金、镁合金、先进高强钢以及镍基合金焊接热裂纹的实验研究进展。建立考虑复杂多组元以及结晶形态对裂纹敏感性影响的量化判据,是该领域未来的重要发展方向。针对母材和焊材进行成分优化、添加形核剂或实施辅助工艺措施,是工程应用领域抑制热裂纹缺陷的有效方法。开展焊接热裂纹产生机理及其抑制方法研究,有助于突破新一代合金材料加工技术瓶颈,推进其在航空航天领域的应用。 |
其他语种文摘
|
The high fusion welding hot cracking sensibility of the next-generation alloy is the key technological difficulty that hinders its widely application in the aeronautic and astronautic industry.A critical review of the fusion welding hot cracking from the perspective of basic mechanism and the experimental research of typical materials was presented in this article.The fusion welding hot cracking phenomena include solidification cracking(occurs within the fusion zone)and liquidation cracking(occurs at the interface between fusion zone and partial melting zone).The formation factors of the fusion welding hot cracking include alloying composition,welding thermal cycle and thermal stress.Based on the comprehensive understanding of the formation mechanism of the fusion welding hot cracking,the relative research progress in the field of aluminum alloys,magnesium alloys,advanced high strength steel and nickel alloys was summarized.The establishment of the quantitative criterion that involves the effects of complicated multi-component and the morphology of the dendrite on the cracking sensibility is the key development direction.Optimizing the alloying composition of the base metal or filler metal,adding nucleanting agent or auxiliary facilities are the practical method for restraining the fusion welding hot cracking.Conducting the research on the mechanism and restraining method of the fusion welding hot cracking helps to solve the difficulty of the next generation alloys processing,which can realize their application in the field of aeronautic and astronautic industry. |
来源
|
材料工程
,2022,50(2):50-61 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000676
|
关键词
|
热裂纹
;
铝合金
;
镁合金
;
高强钢
;
镍基高温合金
|
地址
|
1.
北京工业大学材料与制造学部轻合金材料与加工研究所, 北京, 100124
2.
华沙理工大学, 华沙, 02524
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
科技部中国-波兰政府间科技合作委员会第38届例会人员交流项目
;
2021年度北京工业大学国际科研合作种子基金项目
;
北京市自然科学基金
|
文献收藏号
|
CSCD:7201673
|
参考文献 共
72
共4页
|
1.
Leyens C.
Titanium and titanium alloys:fundamentals and applications,2003:7-28
|
CSCD被引
1
次
|
|
|
|
2.
Soysal T. A simple test for assessing solidification cracking susceptibility and checking validity of susceptibility prediction.
Acta Materialia,2018,143:181-197
|
CSCD被引
8
次
|
|
|
|
3.
Novikov I I.
Hot-shortness of nonferrous metals and alloys,1968
|
CSCD被引
1
次
|
|
|
|
4.
Kou S. A criterion for cracking during solidification.
Acta Materialia,2015,88:366-374
|
CSCD被引
53
次
|
|
|
|
5.
Yuan T. Predicting susceptibility of magnesium alloys to weld-edge cracking.
Acta Materialia,2015,90:242-251
|
CSCD被引
5
次
|
|
|
|
6.
Quiroz V. Investigation of the hot cracking susceptibility of laser welds with the controlled tensile weldability test.
Journal of Strain Analysis for Engineering Design,2012,47(8):587-599
|
CSCD被引
1
次
|
|
|
|
7.
Bakir N. Numerical simulation of solidification crack formation during laser beam welding of austenitic stainless steels under external load.
Welding in the World,2015,60(5):1-8
|
CSCD被引
1
次
|
|
|
|
8.
Bakir N. In situ determination of the critical straining condition for solidification cracking during laser beam welding.
Procedia CIRP,2020,94:666-670
|
CSCD被引
1
次
|
|
|
|
9.
Matsuda F. Quantitative evaluation of solidification brittleness of weld metal during solidification by in-situ observation and measurement(ReportⅤ).
Transactions of Jwri,1990,6:93-98
|
CSCD被引
1
次
|
|
|
|
10.
Matsuda F. Dynamic observation of solidification and solidification cracking during welding with optical microscope.
Transactions of JWRI,2013,11:67-77
|
CSCD被引
1
次
|
|
|
|
11.
Williams J A. Deformation,strength,and fracture above the solidus temperature.
Journal of the Japan Institute of Metals,1968,96(1):5-12
|
CSCD被引
1
次
|
|
|
|
12.
Dickhaus C H. Mechanical properties of solidifying shells of aluminum alloys.
Transactions-American Foundrymens Society,1993:677
|
CSCD被引
1
次
|
|
|
|
13.
Lahaie D J. Physical modeling of the deformation mechanisms of semisolid bodies and a mechanical criterion for hot tearing.
Metallurgical and Materials Transactions B,2001,32(4):697-705
|
CSCD被引
17
次
|
|
|
|
14.
Magnin B. Ductility and rheology of an Al-4.5% Cu alloy from room temperature to coherency temperature.
Materials Science Forum. 217,1996:1209-1214
|
CSCD被引
1
次
|
|
|
|
15.
Prokhorov N N. Fundamentals of the theory for technological strength of metals while crystallising during welding.
Transactions of the Japan Welding Society,1971,2:205-213
|
CSCD被引
2
次
|
|
|
|
16.
Rappaz M. A new hot-tearing criterion.
Metallurgical and Materials Transactions A,1999,30(2):449-455
|
CSCD被引
67
次
|
|
|
|
17.
Feuer U. Mathematical model for the hot cracking tendency of binary aluminum alloys.
Giessereiforschung,1976,28(2):75-80
|
CSCD被引
1
次
|
|
|
|
18.
Kool W H. Integrated approach for prediction of hot tearing.
Metallurgical and Materials Transactions A,2009,40(10):2388-2400
|
CSCD被引
16
次
|
|
|
|
19.
Eskin D G. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys.
Progress in Materials Science,2004,49(5):629-711
|
CSCD被引
90
次
|
|
|
|
20.
Drezet J M.
Prediction of hot tears in DC-cast aluminum billets,2016:912-918
|
CSCD被引
1
次
|
|
|
|
|