牙科陶瓷材料的摩擦学性能研究进展
Research progress in tribological property of dental ceramics
查看参考文献94篇
文摘
|
陶瓷材料因其优异的耐磨性、化学稳定性、生物相容性和美观性被广泛用于牙齿缺损和缺失修复。本文首先介绍了牙科陶瓷材料的化学成分、微观结构和力学性能,基于陶瓷材料的磨损与磨蚀机制,归纳总结了牙科陶瓷材料摩擦学性能优化方面所取得的进展,指出陶瓷材料和天然人牙摩擦学性能失配严重制约了陶瓷修复体的临床应用,进而从室验介质、对摩副以及载荷、位移和循环次数等方面分析汇总牙科陶瓷材料摩擦学性能的体外测试方法。最后,从仿生摩擦学角度探讨了牙科陶瓷材料的未来发展趋势,并指出研制仿生陶瓷基复合材料是解决陶瓷修复体与天然人牙摩擦学性能失配难题最具潜力的策略。 |
其他语种文摘
|
Ceramics are widely used as dental restorative materials because of their superior wear resistance,chemical stability,biocompatibility,and aesthetic features.In this paper,the chemical compositions,microstructures and mechanical properties of dental ceramics were introduced,based on the wear mechanisms of typical dental ceramics and their abrasiveness with opposing human teeth,the main progress concerning the tribological performance optimization of dental ceramics were summarized,and it was pointed out that the mismatch of tribological properties between ceramics and human teeth seriously restricts the clinical application of dental ceramics.Then the in vitro test methods of tribological properties of dental ceramic materials are analyzed and summarized from the aspects of laboratory test medium,friction pair,load,displacement and cycle times.Finally,the future development trends of dental ceramics were discussed from the perspective of bionic tribology.It was pointed out that bionic design of ceramic matrix composites is a promising strategy for overcoming the mismatch of tribological property between dental ceramic restorations and human teeth. |
来源
|
材料工程
,2022,50(2):1-11 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000295
|
关键词
|
牙科陶瓷材料
;
摩擦学性能
;
测试方法
;
微观结构
;
仿生设计
|
地址
|
1.
西南交通大学摩擦学研究所, 材料先进技术教育部重点实验室, 成都, 610031
2.
西南交通大学医院口腔科, 成都, 610031
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
基础医学 |
基金
|
国家自然科学基金资助项目
;
国家教育部高等学校学科创新引智计划项目
|
文献收藏号
|
CSCD:7201669
|
参考文献 共
94
共5页
|
1.
Nanci A.
Ten Cate’s oral histology,2012:1
|
CSCD被引
1
次
|
|
|
|
2.
Xia J. Enamel crystallite strength and wear:nanoscale responses of teeth to chewing loads.
Journal of the Royal Society Interface,2017,14(135):1-8
|
CSCD被引
6
次
|
|
|
|
3.
张震康.
实用口腔科学,2009:500-527
|
CSCD被引
1
次
|
|
|
|
4.
Zhou Z R. Tribology of dental materials:a review.
Journal of Physics D,2008,41(11):113001
|
CSCD被引
11
次
|
|
|
|
5.
Ho G W. Insights on ceramics as dental materials.partⅠ:ceramic material types in dentistry.
Silicon,2011,3(3):109-115
|
CSCD被引
1
次
|
|
|
|
6.
Kruzic J J. Recent advances in understanding the fatigue and wear behavior of dental composites and ceramics.
Journal of the Mechanical Behavior of Biomedical Materials,2018,88:504-533
|
CSCD被引
3
次
|
|
|
|
7.
Zarone F. From porcelainfused-to-metal to zirconia:clinical and experimental considerations.
Dental Materials,2011,27(1):83-96
|
CSCD被引
13
次
|
|
|
|
8.
Guo J. Investigation of the time-dependent wear behavior of veneering ceramic in porcelain fused to metal crowns during chewing simulations.
Journal of the Mechanical Behavior of Biomedical Materials,2014,40:23-32
|
CSCD被引
6
次
|
|
|
|
9.
Stawarczyk B. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites.
Journal of the Mechanical Behavior of Biomedical Materials,2015,55:1-11
|
CSCD被引
2
次
|
|
|
|
10.
Yu P. On the wear behavior and damage mechanism of bonded interface:ceramic vs resin composite inlays.
Journal of the Mechanical Behavior of Biomedical Materials,2020,101:103430
|
CSCD被引
2
次
|
|
|
|
11.
Heintze S D. Wear of ceramic and antagonist-a systematic evaluation of influencing factors in vitro.
Dental Materials,2008,24(4):433-449
|
CSCD被引
14
次
|
|
|
|
12.
Kramer N. Antagonist enamel wears more than ceramic inlays.
Journal of Dental Research,2006,85(12):1097-1100
|
CSCD被引
1
次
|
|
|
|
13.
Mundhe K. Clinical study to evaluate the wear of natural enamel antagonist to zirconia and metal ceramic crowns.
The Journal of Prosthetic Dentistry,2015,114(3):358-363
|
CSCD被引
8
次
|
|
|
|
14.
Cuya J L. Nanoindentation mapping of the mechanical properties of human molar tooth enamel.
Archives of Oral Biology,2002,47(4):281-291
|
CSCD被引
23
次
|
|
|
|
15.
He L H. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics.
Journal of the Mechanical Behavior of Biomedical Materials,2008,1(1):18-29
|
CSCD被引
13
次
|
|
|
|
16.
Sakaguchi R L.
Craig’s restorative dental materials,2012:16
|
CSCD被引
1
次
|
|
|
|
17.
Yahyazadehfar M. Hidden contributions of the enamel rods on the fracture resistance of human teeth.
Acta Biomaterialia,2013,9(1):4806-4814
|
CSCD被引
3
次
|
|
|
|
18.
Cesar P F. Correlation between fracture toughness and leucite content in dental porcelains.
Journal of Dentistry,2005,33(9):721-729
|
CSCD被引
3
次
|
|
|
|
19.
Ge C. Effect of porcelain and enamel thickness on porcelain veneer failure loads in vitro.
The Journal of Prosthetic Dentistry,2014,111(5):380-387
|
CSCD被引
3
次
|
|
|
|
20.
Homsy F. Considerations for altering preparation designs of porcelain inlay/onlay restorations for nonvital teeth.
Journal of Prosthodontics,2015,24(6):457-462
|
CSCD被引
4
次
|
|
|
|
|