中间梁方式下压电式能量采集器发电性能研究
Study on Power Generation Performance of Piezoelectric Energy Harvester Under Intermediate Beam Fixed Mode
查看参考文献23篇
文摘
|
压电式能量采集器(Piezoelectric Energy Harvester,PEH)固定方式的改变会直接影响其发电性能,而传统悬臂梁固定方式(Cantilever Beam Fixed Mode,CBFM)调频范围窄且发电性能较差.为了使PEH的发电性能最大化,提出了一种适用于任意尺寸压电片的中间梁固定方式(Intermediate Beam Fixed Mode,IBFM).同时,通过仿真和实验的方法研究了添加不同质量块后CBFM和IBFM两种固定方式的发电性能.结果表明,在相交频带处,与CBFM相比,采用IBFM后,PEH在单位加速度条件下最大开路电压和发电功率分别平均提升了95.19%和205.88%.此外,机电耦合系数(Electromechanical coupling coefficient,EMCC)平均提升了11.60%.因此,所提出的方法可以为PEH在不同频段处固定方式的选择提供指导. |
其他语种文摘
|
The change of fixed mode of piezoelectric energy harvester(PEH) will directly affect its power generation performance, while the traditional cantilever beam fixed mode(CBFM) has a narrow frequency range and poor power generation performance. In order to maximize the power generation performance of the PEH, an intermediate beam fixed mode (IBFM) suitable for piezoelectric plates of any size is proposed. Meanwhile, the power generation performance of the two fixed modes of the CBFM and IBFM after adding different mass blocks has been studied through simulation and experiment methods. The results show that compared with the CBFM, the maximum open circuit voltage and maximum generated power of the PEH under unit acceleration are increased by 95.19% and 205.88%, respectively at the intersection frequency band. In addition, the electromechanical coupling coefficient(EMCC) is increased by 11.60% on average. Therefore, the proposed method can provide guidance for the selection of fixed mode of the PEH at different frequency bands. |
来源
|
电子学报
,2022,50(2):404-414 【核心库】
|
DOI
|
10.12263/DZXB.20201186
|
关键词
|
压电式能量采集器
;
发电性能
;
悬臂梁固定方式
;
中间梁固定方式
;
相交频带
|
地址
|
1.
江苏省矿山机电装备重点实验室, 江苏省矿山机电装备重点实验室, 江苏, 徐州, 221116
2.
(徐州)中国矿业大学机电工程学院, 江苏, 徐州, 221116
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
机械、仪表工业;电子技术、通信技术 |
基金
|
国家自然科学基金
;
江苏省杰出青年基金
;
江苏高校优势学科建设工程
|
文献收藏号
|
CSCD:7195152
|
参考文献 共
23
共2页
|
1.
Fu H L. A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion.
Energy,2017,125:152-161
|
CSCD被引
3
次
|
|
|
|
2.
Han J. A nonintrusive power supply design for self-powered sensor networks in the smart grid by scavenging energy from ac power line.
IEEE Transactions on Industrial Electronics,2015,62(7):4398-4407
|
CSCD被引
2
次
|
|
|
|
3.
张旭辉. 新型双稳态压电振动俘能系统的理论建模与实验研究.
振动工程学报,2019,32(1):91-100
|
CSCD被引
3
次
|
|
|
|
4.
Wang J L. High-performance piezoelectric wind energy harvester with Y-shaped attachments.
Energy Conversion and Management,2018,181:645-652
|
CSCD被引
1
次
|
|
|
|
5.
Yu J. Power optimisation by mass tuning for mems piezoelectric cantilever vibration energy harvesting.
Journal of Microelectromechanical Systems,2015,25(1):108-117
|
CSCD被引
1
次
|
|
|
|
6.
罗翠线. 基于模态分离技术的3×n阵列式低频宽带压电振动发电机的设计研究.
电子学报,2020,48(3):554-560
|
CSCD被引
4
次
|
|
|
|
7.
徐振龙. 宽频压电振动俘能器的研究现状综述.
振动与冲击,2018,37(8):190-199,205
|
CSCD被引
22
次
|
|
|
|
8.
Abdul A. Effects of proof mass geometry on piezoelectric vibration energy harvesters.
Sensors,2018,18(5):1584
|
CSCD被引
1
次
|
|
|
|
9.
梁光胜. 风车型低频压电振动能量采集器的研究与设计.
压电与声光,2018,40(3):423-427
|
CSCD被引
2
次
|
|
|
|
10.
马天兵. Z型压电振动能量收集装置.
光学精密工程,2019,27(9):1968-1980
|
CSCD被引
9
次
|
|
|
|
11.
Alameh A. Impact of geometry on the performance of cantilever-based piezoelectric vibration energy harvesters.
IEEE Sensors Journal,2019,19(22):10316-10326
|
CSCD被引
1
次
|
|
|
|
12.
白凤仙. 悬臂梁电极长度对压电俘能电气特性的影响研究.
电子学报,2019,47(11):18-24
|
CSCD被引
1
次
|
|
|
|
13.
Zhou G B. A new piezoelectric bimorph energy harvester based on the vortex-induced-vibration applied in rotational machinery.
IEEE/ASME Transactions on Mechatronics,2019,24(2):700-709
|
CSCD被引
3
次
|
|
|
|
14.
Rezaei-Hosseinabdi N. A topology and design optimization method for wideband piezoelectric wind energy harvesters.
IEEE Transactions on Industrial Electronics,2016,63(4):2165-2173
|
CSCD被引
1
次
|
|
|
|
15.
Challa V. A vibration energy harvesting device with bidirectional resonance frequency tenability.
Smart Materials & Structures,2008,17(1):15035-15010
|
CSCD被引
1
次
|
|
|
|
16.
Fan K Q. Design and development of a multipurpose piezoelectric energy harvester.
Energy Conversion & Management,2015,96:430-439
|
CSCD被引
2
次
|
|
|
|
17.
Karadag C. A self-sufficient and frequency tunable piezoelectric vibration energy harvester.
Journal of Vibration & Acoustics,2016,139(1):011013-1-011013-8
|
CSCD被引
1
次
|
|
|
|
18.
Yu L D. Piezoelectric passive self-tuning energy harvester based on a beam-slider structure.
Journal of Sound and Vibration,2020,489:115689
|
CSCD被引
1
次
|
|
|
|
19.
刘兵. 两端固支梁振动能量收集器的结构设计及优化.
机械工程与自动化,2018(1):1-3
|
CSCD被引
3
次
|
|
|
|
20.
Kodali P. Segmented electrodes for piezoelectric energy harvesters.
IEEE Electron Device Letters,2014,35(4):485-487
|
CSCD被引
1
次
|
|
|
|
|