基于样本对元学习的小样本图像分类方法
A Few-Shot Image Classification Method by Pairwise-Based Meta Learning
查看参考文献30篇
文摘
|
本文针对小样本图像分类问题,提出一种基于样本对的元学习(Pairwise-based Meta Learning,PML)方法.利用传递迁移学习对预训练好的Resnet50模型进行微调,得到一个更适应小样本任务的特征编码器,将该特征编码器作为元学习模型的初始特征编码器来训练模型,进一步增强了元学习模型的泛化能力;同时,本文还基于支持集与查询集样本之间的相似性提出元损失函数(Meta Loss,ML),其考虑了特征空间中查询集所有样本的相互关系,以此来缩小正样本类内距离,增加正负样本类间距离,从而提高分类精度.实验结果表明,本文的方法在1-shot、5-shot任务上分别达到了77.65%、89.65%的分类精度,较最新的元学习方法Meta-baseline分别提高7.38%、5.65%. |
其他语种文摘
|
In this paper, a pairwise-based meta learning(PML) method is proposed for few-shot image classification. Transitive transfer learning is used to fine tune the pre-trained Resnet50 model to get a feature encoder that is more suitable for few shot task. The feature encoder is used as the initial feature encoder of the meta-learning model to train the model, which further enhances the generalization ability of the meta-learning model. Based on the similarity between the support set and the query set samples, a meta loss(ML) function is proposed, which considers the relationship between all the samples of the query set in the feature space, so as to reduce the within-class distance of positive samples and increase the between-class distance of positive and negative samples, thus improving the classification accuracy.The experimental results show that the classification accuracy of the methods in this paper is 77.65% and 89.65% on 1-shot and 5-shot tasks, respectively, and it is 7.38% and 5.65% higher than the latest meta-learning method, Meta-baseline. |
来源
|
电子学报
,2022,50(2):295-304 【核心库】
|
DOI
|
10.12263/DZXB.20210453
|
关键词
|
小样本图像
;
传递迁移学习
;
元学习
;
元损失函数
|
地址
|
武汉科技大学, 冶金自动化与检测技术教育部工程研究中心, 湖北, 武汉, 430081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金面上项目
;
湖北省重点研发计划
|
文献收藏号
|
CSCD:7195140
|
参考文献 共
30
共2页
|
1.
Vinyals O. Matching networks for one shot learning.
Proceedings of the 30th International Conference on Neural Information Processing Systems,2016:3630-3638
|
CSCD被引
10
次
|
|
|
|
2.
季鼎承. 基于域与样例平衡的多源迁移学习方法.
电子学报,2019,47(3):692-699
|
CSCD被引
8
次
|
|
|
|
3.
Pan S J. A survey on transfer learning.
IEEE Transactions on Knowledge & Data Engineering,2010,22(10):1345-1359
|
CSCD被引
1054
次
|
|
|
|
4.
李凡长. 元学习研究综述.
计算机学报,2021,44(2):422-446
|
CSCD被引
51
次
|
|
|
|
5.
Lake B. One shot learning of simple visual concepts.
Proceedings of the Annual Meeting of the Cognitive Science Society. 33(33),2011
|
CSCD被引
1
次
|
|
|
|
6.
Snell J. Prototypical networks for few-shot learning.
Proceedings of the International Conference on Neural Information Processing Systems,2017:4077-4087
|
CSCD被引
1
次
|
|
|
|
7.
Tan B. Transitive transfer learning.
Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2015:1155-1164
|
CSCD被引
4
次
|
|
|
|
8.
Sun Q. Meta-transfer learning for few-shot learning.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:403-412
|
CSCD被引
11
次
|
|
|
|
9.
Chen Y. A new meta-baseline for few-shot learning.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:4390
|
CSCD被引
1
次
|
|
|
|
10.
Lubbers N. Inferring low-dimensional microstructure representations using convolutional neural networks.
Physical Review E,2017,96(5):052111
|
CSCD被引
3
次
|
|
|
|
11.
Decost B L. Exploring the microstructure manifold: Image texture representations applied to ultrahigh carbon steel microstructures.
Acta Materialia,2017,133:30-40
|
CSCD被引
12
次
|
|
|
|
12.
Azimi S M. Advanced steel microstructural classification by deep learning methods.
Scientific Reports,2018,8(1):2128
|
CSCD被引
28
次
|
|
|
|
13.
Lee K. Meta-learning with differentiable convex optimization.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:10657-10665
|
CSCD被引
6
次
|
|
|
|
14.
Ren M. Meta-learning for semi-supervised few-shot classification.
Proceedings of the International Conference on Learning Representations
|
CSCD被引
1
次
|
|
|
|
15.
He K. Deep residual learning for image recognition.
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778
|
CSCD被引
93
次
|
|
|
|
16.
Wang X. Multi-similarity loss with general pair weighting for deep metric learning.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:5022-5030
|
CSCD被引
4
次
|
|
|
|
17.
Weinberger K Q. Distance metric learning for large margin nearest neighbor classification.
Journal of Machine Learning Research,2009,10(2):207-244
|
CSCD被引
102
次
|
|
|
|
18.
Loshchilov I. Decoupled weight decay regularization.
Proceedings of the European International Conference on Learning Representations(ICLR),2017
|
CSCD被引
1
次
|
|
|
|
19.
Zeilerm D. Adaptive deconvolutional networks for mid and high level feature learning.
Proceedings of the International Conference on Computer Vision,2011:2018-2025
|
CSCD被引
1
次
|
|
|
|
20.
Finn C. Model-agnostic metalearning for fast adaptation of deep networks.
Proceedings of the International Conference on Machine Learning,2017:1126-1135
|
CSCD被引
17
次
|
|
|
|
|