退火态激光选区熔化成形AlSi10Mg合金组织与力学性能
Microstructure and mechanical property of annealing heat treated AlSi10Mg alloy fabricated by selective laser melting
查看参考文献18篇
文摘
|
AlSi10Mg合金具有高比强度、高耐磨性等优良特点。由于其成分接近共晶点,成形性能良好,被广泛应用于激光选区熔化技术。然而其热处理制度仍然沿用传统铸态合金的热处理规范,影响了其性能的充分发挥。本工作采用激光选区熔化技术制备了AlSi10Mg合金,并研究了沉积态和后续热处理过程中组织演化规律及其对室温力学性能的影响机制。研究发现:沉积态组织由沿沉积方向生长的α-Al柱状枝晶及枝晶间网状Al-Si共晶组成,具有强烈的〈100〉方向织构,沉积层由三部分组成,分别是细晶区、粗晶区及热影响区,抗拉强度389.5 MPa,伸长率4%。退火过程中,共晶Si破碎、球化,基体中过饱和Si不断析出长大。当退火温度从200 ℃提高到500 ℃时,Si颗粒发生Ostwald熟化,平均尺寸增长了23倍。经过300 ℃和500 ℃退火处理后,试样抗拉强度分别为287.0 MPa和268.0 MPa,但伸长率分别提高到10.3%和17.2%。 |
其他语种文摘
|
AlSi10Mg alloy has excellent characteristics such as high specific strength and good wear resistance. The composition of AlSi10Mg alloy is close to the eutectic point, thus it has good forming property and has been widely used in selective laser melting processing. However, for this moment, only the conventional annealing strategy is employed in the selective laser melted AlSi10Mg component, which greatly limits their further applications. In this work, the effects of several annealing on the microstructure and tensile properties of selective laser melted AlSi10Mg alloys were investigated. The results show that the as-fabricated sample presents a mixed structure of columnar α-Al and eutectic Al-Si structure along building direction, which possesses a strong texture of α-Al 〈100〉. The single molten pool consists of fine grain region, coarse grain region and heat affected region. The as-fabricated sample shows ultimate strength of 389.5 MPa with 4% elongation to failure. During the heat treatment, the eutectic Si is broken and spheroidized along with precipitation of supersaturated Al(Si). When the annealing temperature increases from 200 ℃ to 500 ℃, the silicon particle suffers the Ostwald ripening for size increase of 23 times. The samples heat treated at 300 ℃ and 500 ℃ show the ultimate strength of 287.0 MPa and 268.0 MPa, and elongation of 10.3% and 17.2%, respectively. |
来源
|
材料工程
,2022,50(5):156-165 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000444
|
关键词
|
激光选区熔化
;
增材制造
;
AlSi10Mg合金
;
热处理
;
组织演化
|
地址
|
1.
中国商用飞机有限责任公司上海飞机设计研究院, 上海, 201210
2.
西北工业大学, 凝固技术国家重点实验室, 西安, 710072
3.
西安航天发动机有限公司, 西安, 710000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家重点研发计划
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:7191384
|
参考文献 共
18
共1页
|
1.
Yavari S A. Fatigue behavior of porous biomaterials manufactured using selective laser melting.
Materials Science and Engineering: C,2013,33(8):4849-4858
|
CSCD被引
17
次
|
|
|
|
2.
Ke Y. Microstructure and mechanical properties of AlSil0Mg alloy fabricated by selective laser melting.
Applied Laser,2019,39(2):198-203
|
CSCD被引
3
次
|
|
|
|
3.
Lin X. Laser additive manufacturing of high-performance metal components.
Science in China(Information Sciences),2015,45(9):1111-1126
|
CSCD被引
1
次
|
|
|
|
4.
Martin J H. 3D printing of high-strength aluminium alloys.
Nature,2017,549(7672):365-369
|
CSCD被引
215
次
|
|
|
|
5.
Debroy T. Additive manufacturing of metallic components-process, structure and properties.
Progress in Materials Science,2018,92:112-224
|
CSCD被引
273
次
|
|
|
|
6.
Kempen K. Mechanical properties of AlSi10Mg produced by selective laser melting.
Physics Procedia,2012,39:439-446
|
CSCD被引
32
次
|
|
|
|
7.
Louvis E. Selective laser melting of aluminium components.
Journal of Materials Processing Tech,2011,211(2):275-284
|
CSCD被引
66
次
|
|
|
|
8.
Thijs L. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder.
Acta Materialia,2013,61(5):1809-1819
|
CSCD被引
129
次
|
|
|
|
9.
Zhang W. Study on the selective laser melting of AlSi10Mg.
Acta Metallurgica Sinica,2017,53(8):918-926
|
CSCD被引
1
次
|
|
|
|
10.
Rosenthal I. Microstructure and mechanical properties of AlSi10Mg parts produced by the laser beam additive manufacturing (AM) technology.
Metallography Microstructure and Analysis,2014,3(6):448-453
|
CSCD被引
7
次
|
|
|
|
11.
Yan Q T. Effect of annealing temperature on microstructure and tensile properties of AlSi10Mg alloy fabricated by selective laser melting.
Journal of Mechanical Engineering,2020,56(8):37-45
|
CSCD被引
1
次
|
|
|
|
12.
Li W. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism.
Materials Science and Engineering: A,2016,663:116-125
|
CSCD被引
60
次
|
|
|
|
13.
Yu K B. Effects of heat treatment on microstructures and mechanical properties of AlSi10Mg alloy produced by selective laser melting.
Materials Science and Engineering of Powder Metallurgy,2018,23(3):298-305
|
CSCD被引
1
次
|
|
|
|
14.
Aboulkhair N T. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment.
Materials Science and Engineering:A,2016,667:139-146
|
CSCD被引
32
次
|
|
|
|
15.
Fiocchi J. Low temperature annealing dedicated to AlSi10Mg selective laser melting products.
Journal of Alloys and Compounds,2017,695:3402-3409
|
CSCD被引
7
次
|
|
|
|
16.
Gu D D. Laser additive manufacturing of metallic components: materials, processes and mechanisms.
International Materials Reviews,2013,57(3):133-164
|
CSCD被引
34
次
|
|
|
|
17.
Li R D. Quantitative metallographic analysis for morphology change of eutectic silicon in Al-Si-Cu-Mg hypoeutectic casting alloy during the solution heat treatment.
Foundry,1997(6):1-5
|
CSCD被引
2
次
|
|
|
|
18.
Yan C X. Effects of selective laser melting and heat treatment on microstructures and properties of AlSi10Mg alloys.
Special Casting & Nonferrous Alloys,2020,40(2):160-164
|
CSCD被引
1
次
|
|
|
|
|