基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析
Failure analysis of chopped carbon fiber SMC composites by micro X-ray computed tomography
查看参考文献29篇
文摘
|
短切碳纤维片状模塑料(SMC)复合材料内部复杂的纤维三维分布及其造成的多样微裂纹演化过程加剧了其失效分析的难度。针对短切碳纤维SMC复合材料的失效行为进行研究,提出采用微观尺度X射线断层扫描技术实时表征材料内部的微观结构,捕捉碳纤维和微裂纹的几何信息,结合先进的图像采集和图像处理技术,进而准确重构出短切碳纤维SMC复合材料在受力过程中的三维结构变化以及微裂纹的完整演变过程,定量测量微裂纹的几何尺寸,实现损伤的精准诊断,并利用Tsai-Wu失效判据和界面开裂后的基体应力场理论等失效方法探究短切碳纤维SMC复合材料的失效机制。该方法的提出对于研究短切碳纤维SMC复合材料的失效过程以及分析相应的失效行为提供了重要依据。 |
其他语种文摘
|
The complex internal three-dimensional fiber distributions and the various microcrack propagation processes of the chopped carbon fiber sheet molding compound(SMC)composites aggravate the difficulty of failure analysis. In-situ micro X-ray computed tomography was proposed in this study to characterize the internal microstructure evolution under different tensile loading conditions. Combined with advanced image acquisition and image processing technologies, the three-dimensional microstructure of the SMC composites, including the complete microcrack propagation, under different loading conditions was reconstructed, where the microcrack geometric size was quantitatively measured. The failure mechanism of the SMC composites was explored via the Tsai-Wu failure criterion and the matrix stress field theory after interface cracking. The proposed method provides an important basis for studying the failure process of the SMC composites and the corresponding failure behavior. |
来源
|
材料工程
,2022,50(5):130-138 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000765
|
关键词
|
微观尺度X射线断层扫描技术
;
碳纤维复合材料
;
损伤检测
;
损伤表征
;
失效机制
|
地址
|
天津大学机械工程学院, 天津, 300350
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
天津市自然科学基金
|
文献收藏号
|
CSCD:7191381
|
参考文献 共
29
共2页
|
1.
Sun W. Experimental investigation of kink initiation and kink band formation in unidirectional glass fiber-reinforced polymer specimens.
Composite Structures,2015,130:9-17
|
CSCD被引
4
次
|
|
|
|
2.
Ma Y. A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites.
Composite Structures,2017,160:89-99
|
CSCD被引
4
次
|
|
|
|
3.
Tang H. Correlation between failure and local material property in chopped carbon fiber chip-reinforced sheet molding compound composites under tensile load.
Polymer Composites,2019,40(Suppl 2):962-974
|
CSCD被引
2
次
|
|
|
|
4.
Chen Z. Failure of chopped carbon fiber Sheet Molding Compound (SMC) composites under uniaxial tensile loading: Computational prediction and experimental analysis.
Composites Part A: Applied Science and Manufacturing,2019,118:117-130
|
CSCD被引
2
次
|
|
|
|
5.
Wan Y. Micro-CT analysis of internal geometry of chopped carbon fiber tapes reinforced thermoplastics.
Composites Part A: Applied Science and Manufacturing,2016,91:211-221
|
CSCD被引
2
次
|
|
|
|
6.
Feraboli P. Characterization of prepreg-based discontinuous carbon fiber/epoxy systems.
Journal of Reinforced Plastics and Composites,2009,28(10):1191-1214
|
CSCD被引
2
次
|
|
|
|
7.
Feraboli P. Notched behavior of prepreg-based discontinuous carbon fiber/epoxy systems.
Composites Part A: Applied Science and Manufacturing,2009,40(3):289-299
|
CSCD被引
1
次
|
|
|
|
8.
Yamashita S. Experimental characterization of the tensile failure mode of ultra-thin chopped carbon fiber tape-reinforced thermo-plastics.
Journal of Reinforced Plastics and Composites,2016,35(18):1342-1352
|
CSCD被引
1
次
|
|
|
|
9.
Nicoletto G. Mechanical characterization of advanced random discontinuous carbon/epoxy composites.
Materials Today: Proceedings,2016,3(4):1079-1084
|
CSCD被引
1
次
|
|
|
|
10.
Selezneva M. Characterization of mechanical properties of randomly oriented strand thermoplastic composites.
Journal of Composite Materials,2016,50(20):2833-2851
|
CSCD被引
1
次
|
|
|
|
11.
Hattum F. A model to predict the strength of short fiber composites.
Polymer Composites,1999,20(4):524-533
|
CSCD被引
1
次
|
|
|
|
12.
Warren K C. Progressive failure analysis of three-dimensional woven carbon composites in single-bolt, double-shear bearing.
Composites:Part B,2016,84:266-276
|
CSCD被引
9
次
|
|
|
|
13.
Faessel M. 3D Modelling of random cellulosic fibrous networks based on X-ray tomography and image analysis.
Composites Science and Technology,2005,65(13):1931-1940
|
CSCD被引
7
次
|
|
|
|
14.
Harper L T. 3D geometric modelling of discontinuous fibre composites using a force-directed algorithm.
Journal of Composite Materials,2017,51(17):2389-2406
|
CSCD被引
1
次
|
|
|
|
15.
Selezneva M. Analytical model for prediction of strength and fracture paths characteristic to randomly oriented strand (ROS) composites.
Composites: Part B,2016,96:103-111
|
CSCD被引
1
次
|
|
|
|
16.
Marcantonio V. Ultrasonic waves for materials evaluation in fatigue, thermal and corrosion damage: a review.
Mechanical Systems and Signal Processing,2019,120:32-42
|
CSCD被引
5
次
|
|
|
|
17.
Malpot A. An investigation of the influence of moisture on fatigue damage mechanisms in a woven glass-fibre-reinforced PA66 composite using acoustic emission and infrared thermography.
Composites:Part B,2017,130:11-20
|
CSCD被引
2
次
|
|
|
|
18.
Pei S. Mechanical properties prediction of injection molded short/long carbon fiber reinforced polymer composites using micro X-ray computed tomography.
Composites:Part A,2020,130:105732
|
CSCD被引
2
次
|
|
|
|
19.
Rolland H. Fatigue damage mechanisms of short fiber reinforced PA66 as observed by in-situ syn-chrotron X-ray microtomography.
Composites: Part B,2018,143:217-229
|
CSCD被引
3
次
|
|
|
|
20.
Shirinbayan M. High strain rate visco-damageable behavior of Advanced Sheet Molding Compound (A-SMC) under tension.
Composites: Part B,2015,82:30-41
|
CSCD被引
1
次
|
|
|
|
|