帮助 关于我们

返回检索结果

化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响
Influence of formation process on gas generation and electrochemical performance of Li-rich/Si@C Li-ion batteries

查看参考文献38篇

史晓岩 1,2,3   马磊磊 1,2   常增花 1,2   王建涛 1,2,3 *  
文摘 针对富锂锰基正极材料独特的首周充电特性,设计了一种脉冲化成制度,通过优化化成制度减少富锂锰基/硅碳体系电池化成过程中的产气量,提高电池的循环电化学性能。通过GC-MS,SEM,XPS和电化学测试表明,对比传统的化成制度,采用脉冲化成制度后电池的产气量降低了37%左右。此外,脉冲化成制度能在正、负极活性物质表面形成一层致密的膜结构,同时可以缓解化成过程中电芯结构的应力,稳定电极结构。脉冲化成制度还可以有效地节省化成时间,将时间从102.6 h缩短至81.5 h。提升了长循环过程中的电化学稳定性,500周次循环后,容量保持率和中值电压均得到了显著的提升。
其他语种文摘 According to the unique characteristics of Li-rich manganese-based cathode materials during the first cycle charge, a pulse formation process was designed to reduce the gas production during the formation process and improve the electrochemical performance of the Li-rich /Si@C batteries.The GC-MS, SEM, XPS and electrochemical test results show that, compared with the traditional formation process by optimizing the formation process, the gas production of the batteries under the pulse formation is reduced by about 37%.After pulse formation, a dense film structure can be formed on the surface of the positive and negative active materials, the stress of the cells during the formation process can be relieved.The pulse formation process can also effectively save the formation time, shorten the time from 102.6 h to 81.5 h.In addition, the electrochemical stability during cycle is improved, after 500 cycles, both the capacity retention rate and the median voltage have been significantly improved.
来源 材料工程 ,2022,50(5):112-121 【核心库】
DOI 10.11868/j.issn.1001-4381.2021.000317
关键词 富锂锰基正极材料 ; 化成制度 ; 产气 ; 电化学性能 ; 锂离子电池
地址

1. 有研科技集团有限公司, 国家动力电池创新中心, 北京, 100088  

2. 国联汽车动力电池研究院有限责任公司, 北京, 100088  

3. 北京有色金属研究总院, 北京, 100088

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 电工技术
基金 北京市自然科学基金
文献收藏号 CSCD:7191379

参考文献 共 38 共2页

1.  Li M. 30 years of lithium-ion batteries. Advanced Materials,2018,30(33):1800561 CSCD被引 332    
2.  Goodenough J B. A perspective on the Li-ion battery. Science China Chemistry,2019,62(12):1555-1556 CSCD被引 17    
3.  Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nature Communications,2020,11(1):1550 CSCD被引 129    
4.  Chu S. The path towards sustainable energy. Nature Materials,2017,16(1):16-22 CSCD被引 264    
5.  Nayak P K. Review on challenges and recent advances in the electrochemical performance of high capacity Li-and Mn-rich cathode materials for Li-ion batteries. Advanced Energy Materials,2018,8(8):1702397 CSCD被引 51    
6.  Zheng J. Li-and Mn-rich cathode materials: challenges to commercialization. Advanced Energy Materials,2016,7(6):1601284 CSCD被引 35    
7.  Pei Y. Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties. Advanced Functional Materials,2017,27(7):1604349.1-160439.11 CSCD被引 1    
8.  Hu E. Evolution of redox couples in Li-and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nature Energy,2018,3(8):690-698 CSCD被引 77    
9.  Zhang K. Voltage decay in layered Li-rich Mn-based cathode materials. Electrochemical Energy Reviews,2019,8(2):606-623 CSCD被引 1    
10.  Shang H. Suppressing voltage decay of a lithium-rich cathode material by surface enrichment with atomic ruthenium. ACS Applied Materials & Interfaces,2018,10(25):21349-21355 CSCD被引 5    
11.  Ji Y. Surface modification of Li_(1.2) Mn_(0.56) Ni_(0.16) Co_(0.08 O_2 cathode material by supercritical CO_2 for lithium-ion batteries. Journal of the Electrochemical Society,2018,165(11):A2880-A2888 CSCD被引 4    
12.  Chen Z. Unraveling oxygen evolution in Li-rich oxides: a unified modeling of the intermediate peroxo/superoxo-like dimers. Journal of the American Chemical Society,2019,141(27):10751-10759 CSCD被引 6    
13.  Oishi M. Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li_(1.16) Ni_(0.15) Co_(0.19) Mn_(0.50) O_2. Journal of Power Sources,2015,276(15):89-94 CSCD被引 11    
14.  Wang H. CO_2 and O_2 evolution at high voltage cathode materials of li-ion batteries: a differential electrochemical mass spectrometry study. Analytical Chemistry,2014,86(13):6197-6201 CSCD被引 8    
15.  Mao Z. Calendar aging and gas generation in commercial graphite/NMC-LMO lithium-ion pouch cell. Journal of the Electrochemical Society,2017,164(14):A3469-A3483 CSCD被引 4    
16.  Bond T. Electrode stack geometry changes during gas evolution in pouch-cell-type lithium ion batteries. Journal of the electrochemical Society,2017,164(1):A6158-A6162 CSCD被引 4    
17.  Galushkin N E. Mechanism of gases generation during lithium-ion batteries cycling. Journal of the Electrochemical Society,2019,166(6):A897-A908 CSCD被引 15    
18.  Sheng S Z. The effect of the charging protocol on the cycle life of a Li-ion battery. Journal of Power Sources,2006,161(2):1385-1391 CSCD被引 41    
19.  Ito A. A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment. Journal of Power Sources,2008,183(1):344-346 CSCD被引 15    
20.  Ito A. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni_(0.17) Li_(0.2) Co_(0.07) Mn_(0.56)]O_2. Journal of Power Sources,2010,195(2):567-573 CSCD被引 37    
引证文献 1

1 卫寿平 锂离子电池热失控气体产物检测及分析技术研究进展 储能科学与技术,2024,13(11):4155-4176
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号