化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响
Influence of formation process on gas generation and electrochemical performance of Li-rich/Si@C Li-ion batteries
查看参考文献38篇
文摘
|
针对富锂锰基正极材料独特的首周充电特性,设计了一种脉冲化成制度,通过优化化成制度减少富锂锰基/硅碳体系电池化成过程中的产气量,提高电池的循环电化学性能。通过GC-MS,SEM,XPS和电化学测试表明,对比传统的化成制度,采用脉冲化成制度后电池的产气量降低了37%左右。此外,脉冲化成制度能在正、负极活性物质表面形成一层致密的膜结构,同时可以缓解化成过程中电芯结构的应力,稳定电极结构。脉冲化成制度还可以有效地节省化成时间,将时间从102.6 h缩短至81.5 h。提升了长循环过程中的电化学稳定性,500周次循环后,容量保持率和中值电压均得到了显著的提升。 |
其他语种文摘
|
According to the unique characteristics of Li-rich manganese-based cathode materials during the first cycle charge, a pulse formation process was designed to reduce the gas production during the formation process and improve the electrochemical performance of the Li-rich /Si@C batteries.The GC-MS, SEM, XPS and electrochemical test results show that, compared with the traditional formation process by optimizing the formation process, the gas production of the batteries under the pulse formation is reduced by about 37%.After pulse formation, a dense film structure can be formed on the surface of the positive and negative active materials, the stress of the cells during the formation process can be relieved.The pulse formation process can also effectively save the formation time, shorten the time from 102.6 h to 81.5 h.In addition, the electrochemical stability during cycle is improved, after 500 cycles, both the capacity retention rate and the median voltage have been significantly improved. |
来源
|
材料工程
,2022,50(5):112-121 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000317
|
关键词
|
富锂锰基正极材料
;
化成制度
;
产气
;
电化学性能
;
锂离子电池
|
地址
|
1.
有研科技集团有限公司, 国家动力电池创新中心, 北京, 100088
2.
国联汽车动力电池研究院有限责任公司, 北京, 100088
3.
北京有色金属研究总院, 北京, 100088
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
电工技术 |
基金
|
北京市自然科学基金
|
文献收藏号
|
CSCD:7191379
|
参考文献 共
38
共2页
|
1.
Li M. 30 years of lithium-ion batteries.
Advanced Materials,2018,30(33):1800561
|
CSCD被引
332
次
|
|
|
|
2.
Goodenough J B. A perspective on the Li-ion battery.
Science China Chemistry,2019,62(12):1555-1556
|
CSCD被引
17
次
|
|
|
|
3.
Manthiram A. A reflection on lithium-ion battery cathode chemistry.
Nature Communications,2020,11(1):1550
|
CSCD被引
129
次
|
|
|
|
4.
Chu S. The path towards sustainable energy.
Nature Materials,2017,16(1):16-22
|
CSCD被引
264
次
|
|
|
|
5.
Nayak P K. Review on challenges and recent advances in the electrochemical performance of high capacity Li-and Mn-rich cathode materials for Li-ion batteries.
Advanced Energy Materials,2018,8(8):1702397
|
CSCD被引
51
次
|
|
|
|
6.
Zheng J. Li-and Mn-rich cathode materials: challenges to commercialization.
Advanced Energy Materials,2016,7(6):1601284
|
CSCD被引
35
次
|
|
|
|
7.
Pei Y. Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties.
Advanced Functional Materials,2017,27(7):1604349.1-160439.11
|
CSCD被引
1
次
|
|
|
|
8.
Hu E. Evolution of redox couples in Li-and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release.
Nature Energy,2018,3(8):690-698
|
CSCD被引
77
次
|
|
|
|
9.
Zhang K. Voltage decay in layered Li-rich Mn-based cathode materials.
Electrochemical Energy Reviews,2019,8(2):606-623
|
CSCD被引
1
次
|
|
|
|
10.
Shang H. Suppressing voltage decay of a lithium-rich cathode material by surface enrichment with atomic ruthenium.
ACS Applied Materials & Interfaces,2018,10(25):21349-21355
|
CSCD被引
5
次
|
|
|
|
11.
Ji Y. Surface modification of Li_(1.2) Mn_(0.56) Ni_(0.16) Co_(0.08 O_2 cathode material by supercritical CO_2 for lithium-ion batteries.
Journal of the Electrochemical Society,2018,165(11):A2880-A2888
|
CSCD被引
4
次
|
|
|
|
12.
Chen Z. Unraveling oxygen evolution in Li-rich oxides: a unified modeling of the intermediate peroxo/superoxo-like dimers.
Journal of the American Chemical Society,2019,141(27):10751-10759
|
CSCD被引
6
次
|
|
|
|
13.
Oishi M. Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li_(1.16) Ni_(0.15) Co_(0.19) Mn_(0.50) O_2.
Journal of Power Sources,2015,276(15):89-94
|
CSCD被引
11
次
|
|
|
|
14.
Wang H. CO_2 and O_2 evolution at high voltage cathode materials of li-ion batteries: a differential electrochemical mass spectrometry study.
Analytical Chemistry,2014,86(13):6197-6201
|
CSCD被引
8
次
|
|
|
|
15.
Mao Z. Calendar aging and gas generation in commercial graphite/NMC-LMO lithium-ion pouch cell.
Journal of the Electrochemical Society,2017,164(14):A3469-A3483
|
CSCD被引
4
次
|
|
|
|
16.
Bond T. Electrode stack geometry changes during gas evolution in pouch-cell-type lithium ion batteries.
Journal of the electrochemical Society,2017,164(1):A6158-A6162
|
CSCD被引
4
次
|
|
|
|
17.
Galushkin N E. Mechanism of gases generation during lithium-ion batteries cycling.
Journal of the Electrochemical Society,2019,166(6):A897-A908
|
CSCD被引
15
次
|
|
|
|
18.
Sheng S Z. The effect of the charging protocol on the cycle life of a Li-ion battery.
Journal of Power Sources,2006,161(2):1385-1391
|
CSCD被引
41
次
|
|
|
|
19.
Ito A. A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment.
Journal of Power Sources,2008,183(1):344-346
|
CSCD被引
15
次
|
|
|
|
20.
Ito A. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni_(0.17) Li_(0.2) Co_(0.07) Mn_(0.56)]O_2.
Journal of Power Sources,2010,195(2):567-573
|
CSCD被引
37
次
|
|
|
|
|