帮助 关于我们

返回检索结果

高温下前驱膜形成机制的研究进展
Research progress in formation mechanism of precursor film at high temperatures

查看参考文献68篇

文摘 本文综述了高温下前驱膜的形成机制,即表面扩散机制、蒸发-凝结机制、皮下渗透机制和快速吸附-薄层漫流机制。在实验表征的金属/金属润湿体系中,最有可能的机制为皮下渗透机制,其形成与表观接触角、接触半径、固体金属与氧化膜的间隙大小有关。在金属/陶瓷体系中,前驱膜的形成通常为快速吸附-薄层漫流机制。前驱膜为吸附机制时,需要满足液/固界面的相对惰性和高亲和力这一矛盾体。同时介绍了高温反应润湿体系中,前驱膜的另一种可能的机制,即薄膜传输机制;指出研究前驱膜的难点在于前驱膜的不可预测性和不稳定性,其发展方向应趋于系统化,并建立相应的理论模型。
其他语种文摘 The formation mechanisms of the precursor film(PF)at high temperature were reviewed, i.e., surface diffusion mechanism, evaporation-condensation mechanism, subcutaneous infiltration mechanism, and rapid absorption then film overflow mechanism. In the experimental metallic systems, the most possible mechanism is the subcutaneous infiltration mechanism, which is related to the apparent contact angle, contact radius, height of gap between the substrate metal and oxide film. In the metal/ceramic system, the formation of precursor film is usually rapid absorption then film overflow mechanism. The appearance of PF for adsorption mechanism needs to meet the contradiction of relative inertia and high affinity at the liquid/solid interface. Meanwhile, another possible mechanism of precursor film in high temperature reactive wetting system, namely film transport mechanism, is introduced. It was pointed out that the difficulty of studying precursor film lies in the unpredictability and instability of precursor film, and its development direction should be systematic, and the corresponding theoretical model should be established.
来源 材料工程 ,2022,50(5):1-10 【核心库】
DOI 10.11868/j.issn.1001-4381.2021.000277
关键词 润湿性 ; 润湿脚 ; 润湿晕圈 ; 扩散带
地址

兰州理工大学, 甘肃省省部共建有色金属先进加工与再利用国家重点实验室, 兰州, 730050

语种 中文
文献类型 综述型
ISSN 1001-4381
学科 化学
基金 国家自然科学基金项目
文献收藏号 CSCD:7191369

参考文献 共 68 共4页

1.  Siewert T A. Brazing alloy spreading on steel. Welding Journal,1978,57:31-37 CSCD被引 2    
2.  Webb E B III. Precursor film controlled wetting of Pb on Cu. Physical Review Letters,2003,91(23):236102 CSCD被引 11    
3.  Bailey G L J. The flow of liquid metals on solid metal surfaces and its relation to soldering, brazing, and hot-dip coating. Journal of the Institute of Metals,1951,80:57-75 CSCD被引 2    
4.  Hardy W B III. The spreading of fluids on glass. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1919,38(223):49-55 CSCD被引 2    
5.  Radigan W. Kinetics of spreading of glass on fernico metal. Journal of Colloid and Interface Science,1974,49(2):241-248 CSCD被引 2    
6.  Marmur A. The dependence of drop spreading on the size of the solid surface. Journal of Colloid and Interface Science,1980,78(1):262-265 CSCD被引 2    
7.  De Gennes P G. Wetting: statics and dynamics. Reviews of Modern Physics,1985,57(3):827 CSCD被引 111    
8.  Teletzke G F. How liquids spread on solids. Chemical Engineering Communications,1987,55(1/6):41-82 CSCD被引 4    
9.  Chung D D L. Materials for electronic packaging,1995 CSCD被引 1    
10.  Bascom W D. Dynamic surface phenomena in the spontaneous spreading of oils on solids. Contact angle, wettability, and adhesion,1964:355-379 CSCD被引 1    
11.  Popescu M N. Precursor films in wetting phenomena. Journal of Physics: Condensed Matter,2012,24(24):243102 CSCD被引 2    
12.  Saramago B. Thin liquid wetting films. Current Opinion in Colloid & Interface Science,2010,15(5):330-340 CSCD被引 2    
13.  Singler T J. Wetting dynamics of molten solder alloys on metal substrates. Journal of Electronic Packaging,1992,144:128-134 CSCD被引 3    
14.  Xian A P. Precursor film of tin-based active solder wetting on ceramics. Journal of Materials Science,1993,28(4):1019-1030 CSCD被引 9    
15.  Tanaka S I. Reactive wetting dynamics on 6H-SiC surface with oxide layer. Advanced Materials Research,2006,11:571-574 CSCD被引 2    
16.  Wang S Y. High-temperature reactive wetting systems: role of lattice constant. Chemical Engineering Science,2019,209:115206 CSCD被引 5    
17.  Bredzs N. Grain boundary penetration and base metal erosion of in high temperature brazing. Welding Journal,1962,41(3):129-145 CSCD被引 2    
18.  Cherry B W. Kinetics of wetting of surfaces by polymers. Journal of Colloid and Interface Science,1969,29:174-176 CSCD被引 4    
19.  Blake T D. Kinetics of liquid-liquid displacement. Journal of Colloid and Interface Science,1969,30(3):421-423 CSCD被引 30    
20.  Ruckenstein E. Slip velocity during wetting of solids. Journal of Colloid and Interface Science,1977,59(1):135-138 CSCD被引 2    
引证文献 1

1 田浪浪 高温液钠与不锈钢界面润湿机制研究 原子能科学技术,2024,58(9):1902-1911
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号