低温808 nm高效率半导体激光器
Low Temperature 808 nm High Efficiency Semiconductor Laser
查看参考文献25篇
文摘
|
为了提高低温工作环境下808 nm半导体激光器的输出特性,深入研究了电光转换效率的温度特性。结合载流子泄漏抑制和器件串联电阻的优化考虑,从理论上深入分析了有源区量子阱内的载流子限制现象,提出针对低温工作环境下的势垒高度及相应的量子阱结构设计方法,包括势垒层的材料组分、厚度等重要参数的优化,极大地改善了器件在低温工作环境下的性能。采用优化后的外延结构,制备了腔长2 mm的半导体激光巴条。在工作温度- 50 ℃ 、注入电流为600 A时,巴条输出功率达到799 W,电光转换效率为71%,斜率效率为1.34 W / A;注入电流为400 A时,器件达到最高电光转换效率73.5%,此时的载流子限制效率约为99%,串联电阻为0.43 mΩ;在- 60 ~ 60 ℃温度范围内,中心波长随温度的漂移系数为0.248 nm/ ℃ 。 |
其他语种文摘
|
In order to improve the performance of 808 nm semiconductor laser operating at low temperature, the temperature dependence of electro-optical conversion efficiency was studied. Combining the suppression of carrier leakage and the optimization of the series resistance, the carrier confinement phenomenon in the quantum well was analyzed theoretically. Moreover, the potential barrier height and the corresponding quantum well structure for low temperature operating were proposed, including the optimization of important parameters such as the material composition and thickness of the barrier layer, which showed significant benefit for operation under low temperature. Basing on the optimized epitaxial structure, semiconductor laser bars with a cavity length of 2 mm were fabricated. Under the temperature of- 50 ℃, an electro-optical conversion efficiency of 71% was demonstrated with a slope efficiency of 1.34 W / A and an injection current of 600 A. Record high electro-optical conversion efficiency of 73.5% was reached with the injection current of 400 A, while the carrier confinement efficiency was as high as 99%, and the series resistance was as low as 0.43 mΩ. In the temperature range of- 60- 60 ℃, the shift coefficient of the center wavelength with temperature was about 0.248 nm / ℃. |
来源
|
发光学报
,2022,43(5):786-795 【核心库】
|
DOI
|
10.37188/CJL.20220025
|
关键词
|
半导体激光器
;
载流子泄漏
;
低温
;
高效率
;
温度效应
|
地址
|
1.
长春理工大学光电工程学院, 吉林, 长春, 130022
2.
长春理工大学, 高功率半导体激光国家重点实验室, 吉林, 长春, 130022
3.
海南师范大学物理与电子工程学院, 海南省激光技术与光电功能材料重点实验室, 海南, 海口, 571158
4.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-7032 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
陕西省自然科学基金
;
陕西省科技厅人才项目
;
长春理工大学高功率半导体激光国家重点实验室基金资助项目
|
文献收藏号
|
CSCD:7191176
|
参考文献 共
25
共2页
|
1.
袁庆贺. 砷化镓基近红外大功率半导体激光器的发展及应用.
激光与光电子学进展,2019,56(4):040003-1-040003-14
|
CSCD被引
13
次
|
|
|
|
2.
陈良惠. 半导体激光器研究进展.
中国激光,2020,47(5):0500001-1-0500001-19
|
CSCD被引
55
次
|
|
|
|
3.
宁永强. 大功率半导体激光器发展及相关技术概述.
光学学报,2021,41(1):0114001-1-0114001-10
|
CSCD被引
40
次
|
|
|
|
4.
王立军. 大功率半导体激光器研究进展.
发光学报,2015,36(1):1-19
|
CSCD被引
81
次
|
|
|
|
5.
李瑞冬. 侧向耦合分布反馈半导体激光器光栅结构及耦合特性.
发光学报,2021,42(12):1921-1927
|
CSCD被引
1
次
|
|
|
|
6.
姚中辉. 基于双倾斜沟槽结构的O波段单纵模Fabry-Perot激光器.
发光学报,2021,42(11):1804-1809
|
CSCD被引
3
次
|
|
|
|
7.
郑权. 大功率二极管泵浦固体激光器的应用和发展.
光学精密工程,2001,9(1):6-9
|
CSCD被引
9
次
|
|
|
|
8.
Vanleeuwen R. High power 808 nm VCSEL arrays for pumping of compact pulsed high energy Nd: YAG lasers operating at 946 nm and 1 064 nm for blue and UV light generation.
Proceedings of SPIE 7912, Solid State Lasers XX: Technology and Devices,2011:79120Z-1-79120Z-7
|
CSCD被引
1
次
|
|
|
|
9.
Sebastian J. Research on 9xx nm diode laser for direct and pumping applications.
Proceedings of SPIE 9255,XX International Symposium on High-power Laser Systems and Applications 2014,2015:92550Y-1-92550Y-11
|
CSCD被引
1
次
|
|
|
|
10.
Boni A. Epitaxial design progress for high power,efficiency,and brightness in 970 nm broad area lasers.
Proceedings of SPIE 11668, High-power Diode Laser TechnologyⅪX,2021:1166807-1-1166807-8
|
CSCD被引
1
次
|
|
|
|
11.
Hasler K H. Numerical study of high-power semiconductor lasers for operation at subzero temperatures.
Semicond. Sci. Technol,2017,32(4):045004
|
CSCD被引
1
次
|
|
|
|
12.
Bulashevich K A. Effect of free-carrier absorption on performance of 808 nm Al-GaAs-based high-power laser diodes.
Semicond. Sci. Technol,2007,22(5):502-510
|
CSCD被引
1
次
|
|
|
|
13.
Ryuh Y. Effect of active-layer structures on temperature characteristics of InGaN blue laser diodes.
Opt. Express,2008,16(14):10849-10857
|
CSCD被引
1
次
|
|
|
|
14.
Kanskar M. 73% CW power conversion efficiency at 50 W from 970 nm diode laser bars.
Electron. Lett,2005,41(5):245-247
|
CSCD被引
17
次
|
|
|
|
15.
Cao C S. Recent development of high-power-efficiency 50-W CW TE/TM polarized 808-nm diode laser bar at Lasertel.
Proceedings of SPIE 7583, High-power Diode Laser Technology and Applications VIII,2010:75830L-1-75830L-6
|
CSCD被引
1
次
|
|
|
|
16.
宋云菲. 808 nm半导体激光芯片电光转换效率的温度特性机理研究.
物理学报,2017,66(10):104202-1-104202-6
|
CSCD被引
7
次
|
|
|
|
17.
Frevert C. The impact of low Al-content waveguides on power and efficiency of 9xx nm diode lasers between 200 and 300 K.
Semicond. Sci. Technol,2016,31(2):025003-1-025003-12
|
CSCD被引
6
次
|
|
|
|
18.
Wang Z F. High power,high efficiency continuous-wave 808 nm laser diode arrays.
Opt. Laser Technol,2017,97:297-301
|
CSCD被引
6
次
|
|
|
|
19.
Gapontsev V. Highly-efficient high-power pumps for fiber lasers.
Proceedings of SPIE 10086, High-power Diode Laser Technology X V,2017:1008604-1-1008604-10
|
CSCD被引
1
次
|
|
|
|
20.
Frevert C. 940 nm QCW diode laser bars with 70% efficiency at 1 kW output power at 203K:analysis of remaining limits and path to higher efficiency and power at 200 K and 300 K.
Proceedings of SPIE 9733,High-power Diode Laser Technology and Applications XIV,2016:97330L-1-97330L-13
|
CSCD被引
1
次
|
|
|
|
|