帮助 关于我们

返回检索结果

多层感知机结合辐射传输模型的复杂陆地表面云检测
Multi-layer Perceptron Combined with Radiative Transfer Model for Complex Land Surface Cloud Detection

查看参考文献44篇

邓梦娇 1   徐新 1,2 *   马盈盈 3   龚威 3   金适宽 3   胡瑞敏 4  
文摘 云检测是卫星遥感数据预处理中至关重要的工作.本文将多层感知机和辐射传输模型相结合,利用可见光和近红外波段反射率信息从卫星影像中识别出云像元.该方法利用SBDART辐射传输模型,模拟获得了各种复杂陆地地表的反射率值数据集,为多层感知机提供训练样本.随后,用训练好的多层感知机模型区分FY-3D卫星MERSI II影像中的云像元和非云像元,利用CALIPSO垂直特性掩膜产品(Vertical Feature Mask,VFM)逐像元进行验证,并与MODIS云掩膜产品(MYD35)进行横向对比.结果表明,以VFM数据集为标准的情况下,多层感知机识别云的总正确率为76.25%,其中在夏季和低纬度地区效果最好,如赤道附近地表识别的准确率可达到91.74%,而在城市、农田和裸地等复杂地表类型条件下的云检测识别正确率分别为83.37%、84.52%和73.11%,分别高于MYD35产品的83.25%、83.31%和72.66%.为了进一步验证多层感知机结合辐射传输模型云检测方法的有效性,将辐射传输模型模拟得到的训练样本分别用于k-最近邻、朴素贝叶斯以及随机森林算法,并与本文多层感知机算法进行对比.结果表明,将多层感知机和辐射传输模型相结合具有更高的正确率.
其他语种文摘 Cloud detection is a key step in the preprocessing of satellite remote sensing data. This paper proposes a cloud detection method by combining a multilayer perceptron with a radiative transfer model. The method is to identify cloud from moderate resolution satellite image using visible and near-infrared band reflectance information. In this method, firstly, the santa barbara DISORT atmospheric radiative transfer model(SBDART)is used to simulate and obtain datasets of reflectance values for a variety of complex terrestrial surfaces, which provides training samples for the multilayer perceptron. Secondly, the trained network model is used to distinguish cloud pixels from total pixels of the advanced medium Resolution Spectral Imager(MERSI II)image in the FengYun3D satellite MERSI II image, and then verified using vertical feature mask(VFM)product of the cloud-aerosol LIDAR infrared pathfinder satellite observations satellite(CALIPSO)and compared horizontally with the cloud mask product(MYD35)of the moderate resolution imaging spectroradiometer(MODIS). The results show that the accuracy of cloud detection for the multilayer perceptron is 76.25%, and especially this method works best in summer and low latitudes, achieves an accuracy of 91.74% for surface identification near the equator. In this paper, the method is more effective in detecting clouds under complex surface type conditions such as urban, farmland and bare soil, with accuracies of 83.37%, 84.52% and 73.11% respectively, which are higher than the 83.25%, 83.31% and 72.66% of the MYD35 product respectively. To further validate the effectiveness of the multilayer perceptron combined with the radiative transfer model, the training samples obtained from the radiative transfer model simulations are used in the k-nearest neighbors, Naive Bayesian, and Random Forest algorithms, respectively, and compared with the multilayer perceptron algorithm in this paper. The results show that the combination of the multilayer perceptron and the radiative transfer model has a higher accuracy.
来源 电子学报 ,2022,50(4):932-942 【核心库】
DOI 10.12263/DZXB.20210636
关键词 云检测 ; 多层感知机 ; 辐射传输模拟 ; MERSI II ; MODIS
地址

1. 武汉科技大学计算机科学与技术学院, 湖北, 武汉, 430065  

2. 武汉科技大学, 智能信息处理与实时工业系统湖北重点实验室, 湖北, 武汉, 430065  

3. 武汉大学, 测绘遥感信息工程国家重点实验室, 湖北, 武汉, 430072  

4. 武汉大学计算机学院, 湖北, 武汉, 430072

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金
文献收藏号 CSCD:7190619

参考文献 共 44 共3页

1.  Zhu Z. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment,2012,118:83-94 CSCD被引 111    
2.  Jin S. Adapting the dark target algorithm to advanced MERSI sensor on the FengYun-3-D satellite: Retrieval and Validation of Aerosol Optical Depth Over Land. IEEE Transactions on Geoscience and Remote Sensing,2021,59(10):8781-8797 CSCD被引 4    
3.  胡根生. 结合分类与迁移学习的薄云覆盖遥感图像地物信息恢复. 电子学报,2017,45(12):2855-2862 CSCD被引 2    
4.  Jedlovec G J. Spatial and temporal varying thresholds for cloud detection in GOES imagery. IEEE Transactions on Geoscience and Remote Sensing,2008,46(6):1705-1717 CSCD被引 16    
5.  Hagolle O. A multitemporal method for cloud detection, applied to FORMO-SAT-2, VENμS, LANDSAT and SENTINEL-2 images. Remote Sensing of Environment,2010,114(8):1747-1755 CSCD被引 35    
6.  Saunders R W. An improved method for detecting clear sky and cloudy radiances from AVHRR data. International Journal of Remote Sensing,1988,9(1):123-150 CSCD被引 58    
7.  Kriebel K T. The cloud analysis tool APOLLO: Improvements and validations. International Journal of Remote Sensing,2003,24(12):2389-2408 CSCD被引 18    
8.  Wei J. Cloud detection for Landsat imagery by combining the random forest and superpixels extracted via energy-driven sampling segmentation approaches. Remote Sensing of Environment,2020,248:1-14 CSCD被引 8    
9.  Li Y. Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning. Remote Sensing of Environment,2020,250:1-18 CSCD被引 11    
10.  Yang Z. Capability of Fengyun-3D satellite in earth system observation. Journal of Meteorological Research,2019,33(6):1113-1130 CSCD被引 1    
11.  Rossow W B. Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. Journal of Climate,1993,6(12):2341-2369 CSCD被引 45    
12.  Irish R R. Landsat 7 automatic cloud cover assessment. Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI,2000:348-355 CSCD被引 4    
13.  Irish R R. Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogrammetric Engineering & Remote Sensing,2006,72(10):1179-1188 CSCD被引 38    
14.  Ackerman S A. Discriminating clear sky from clouds with MODIS. Journal of Geophysical Research: Atmospheres,1998,103(D24):32141-32157 CSCD被引 76    
15.  Sun L. A universal dynamic threshold cloud detection algorithm(UDTCDA) supported by a prior surface reflectance database. Journal of Geophysical Research: Atmospheres,2016,121(12):7172-7196 CSCD被引 15    
16.  Vermote E F. Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):675-686 CSCD被引 257    
17.  Vermote E. Second simulation of a satellite signal in the solar spectrum-vector (6SV). 6S User Guide Version,2006,3(2):1-55 CSCD被引 1    
18.  Wang H. Application of support vector machines in cloud detection using EOS/MODIS. Remote Sensing Applications for Aviation Weather Hazard Detection and Decision Support,2008:1-8 CSCD被引 1    
19.  Meng F. A sparse dictionary learning-based adaptive patch inpainting method for thick clouds removal from high-spatial resolution remote sensing imagery. Sensors,2017,17(9):1-16 CSCD被引 4    
20.  徐少平. 采用深度学习与图像融合混合实现策略的低照度图像增强算法. 电子学报,2021,49(1):72-76 CSCD被引 5    
引证文献 1

1 李清彩 基于深度学习的小麦籽粒锌含量预测及安全利用分区 农业环境科学学报,2024,43(10):2248-2259
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号