帮助 关于我们

返回检索结果

基于图注意力机制和Transformer的异常检测
Abnormal Detection Based on Graph Attention Mechanisms and Transformer

查看参考文献30篇

严莉 1 *   张凯 1   徐浩 1   韩圣亚 1   刘珅岐 1   史玉良 2  
文摘 异常检测对电力行业的发展有着重要的影响,如何根据大规模电力数据进行异常检测是重要的研究热点.目前,大多数研究通过聚类或神经网络进行异常检测.但是这些方法忽略了时序数据之间潜在的关联关系及某些特点的重要信息,没有充分挖掘出数据的潜在价值.因此,提出了一种基于图注意力和Transformer的异常检测模型.该模型首先根据数据中台中获取的电力数据(主要包括用户ID、电能表ID、用户类型、电流、电压、功率等数据)构建一个异构信息网络;然后,为了减少模型参数和避免出现过拟合的现象,在图卷积网络(Graph Convolutional Network, GCN)模型的基础上,引入非负矩阵分解(Non-Negative Matrix Factorization,NNMF)的方法来进行相似性学习;最后采用图注意力网络(Graph Attention Network,GAT)和Transformer共同捕获数据间的相互关联关系,从而提高检测精度.以中国某地区的电力数据为基础进行验证,实验结果表明所提出的方法可以有效进行异常检测.
其他语种文摘 Anomaly detection has an important impact on the development of the electric power industry, and how to detect anomalies based on large-scale power data is a research hotspot. At present, most researches use clustering or neural network to detect anomalies. But these methods ignore the potential relationship between the data and miss some specific important information, and do not fully exploit the potential value of the data. Therefore, an abnormal detection model based on graph attention and transformer is proposed. The model first constructs a heterogeneous information network based on the power data(mainly including user ID, meter ID, user type, electrical current, voltage, power, etc.)collected in the data center; then, in order to reduce the model parameters and avoid the phenomenon of overfitting, on the basis of the graph convolutional network(GCN)model, a non-negative matrix factorization(NNMF)method is introduced to perform similarity learning; finally, a graph attention network(GAT)and Transformer are jointly used to capture the correlation relationships between data, thus improving the detection accuracy. The validation analysis is carried out based on the power data of a region in China. The experimental results show that the proposed method can effectively perform anomaly detection.
来源 电子学报 ,2022,50(4):900-908 【核心库】
DOI 10.12263/DZXB.20210722
关键词 异常检测 ; 异构信息网络 ; 相似性学习 ; 图注意力网络 ; Transformer
地址

1. 国网山东省电力公司信息通信公司, 山东, 济南, 250013  

2. 山东大学软件学院, 山东, 济南, 250101

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国网山东省电力公司科技项目
文献收藏号 CSCD:7190616

参考文献 共 30 共2页

1.  谢敬东. 基于分阶段离群点检测的电力市场异常辨识. 科学技术与工程,2021,21(9):3633-3641 CSCD被引 2    
2.  Al-Dhamari A. Online video-based abnormal detection using highly motion techniques and statistical measures. Telkomnika,2019,17(4):2039-2047 CSCD被引 1    
3.  丁小欧. 基于相关性分析的工业时序数据异常检测. 软件学报,2020,31(3):22 CSCD被引 2    
4.  Lim J. Web based online real-time outage cost assessment information system of power system. Review of Scientific Instruments,2012,37(2):171-172 CSCD被引 1    
5.  Braitman L E. Confidence intervals extract clinically useful information from data. Annals of Internal Medicine,1988,108(2):296-298 CSCD被引 1    
6.  Zhang S. Design of wide-area power system damping controllers resilient to communication failures. IEEE Transactions on Power Systems,2013,28(4):4292-4300 CSCD被引 6    
7.  Shafaghi A. Equipment failure rate updating-Bayesian estimation. Journal of Hazardous Materials,2008,159(1):87-91 CSCD被引 2    
8.  Sorensen P. Power fluctuations from large wind farms. IEEE Transactions on Power Systems,2007,22(3):958-965 CSCD被引 40    
9.  Xu L. Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification E-algorithm. IEEE Transactions on Power Systems,2007,22(1):164-171 CSCD被引 7    
10.  Bu S. When the smart grid meets energy Efficient communications: Green wireless cellular networks powered by the smart grid. IEEE Transactions on Wireless Communications,2012,11(8):3014-3024 CSCD被引 5    
11.  孙毅. 基于高斯核函数改进的电力用户用电数据离群点检测方法. 电网技术,2018,42(5):1595-1606 CSCD被引 25    
12.  Monedero I. Detection of frauds and other non-technical losses in a power utility using Pearson coeffificient, Bayesian networks and decision trees. International Journal of Electrical Power & Energy Systems,2012,34(1):90-98 CSCD被引 13    
13.  Wang Z. Analysis of 10kV nontechnical loss detection with data-driven approaches. 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia),2019:4154-4158 CSCD被引 1    
14.  Buzau M M. Hybrid deep neural networks for detection of non-technical losses in electricity smart meters. IEEE Transactions on Power Systems,2020,35(2):1254-1263 CSCD被引 10    
15.  Chahla C. A deep learning approach for anomaly detection and prediction in power consumption data. Energy Efficiency,2020,13(8):1633-1651 CSCD被引 2    
16.  Barua A. Hierarchical temporal memory based machine learning for real-time, unsupervised anomaly detection in smart grid: WiP abstract. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems(ICCPS),2020:188-189 CSCD被引 1    
17.  Rouzbahani H M. An ensemble deep convolutional neural network model for electricity theft detection in smart grids. 2020 IEEE International Conference on Systems, Man, and Cybernetics(SMC). Singapore,2020:3637-3642 CSCD被引 1    
18.  Lo Y L. Non-technical loss detection using smart distribution network measurement data. IEEE PES Innovative Smart Grid Technologies,2012:1-5 CSCD被引 4    
19.  张承智. 基于实值深度置信网络的用户侧窃电行为检测. 电网技术,2019,43(3):1083-1091 CSCD被引 28    
20.  Wang B Q. Variance error of multi-classification based anomaly detection for time series data. J. Comput. Methods Sci. Eng,2021,21(4):875-890 CSCD被引 1    
引证文献 7

1 张晓华 基于GNN的电网动态特性评估及其知识图谱应用 华中科技大学学报. 自然科学版,2023,51(3):47-51,59
CSCD被引 2

2 邹德旭 基于图神经网络的变压器短路电流计算方法 全球能源互联网,2024,7(3):303-311
CSCD被引 0 次

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号