面向B5G/6G的GFDM信号高精度测距与定位研究
Research on High Precision Ranging and Positioning Based on GFDM Signal for B5G/6G
查看参考文献26篇
文摘
|
广义频分复用(Generalized Frequency Division Multiplexing,GFDM)技术是在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术基础上发展而来的一种新的多载波调制技术,其特点是子载波非正交以及具有灵活的时频资源配置. GFDM作为目前研究的主流波形,有望成为B5G(Beyond Fifth-Generation)或者6G(Sixth- Generation)时代移动通信技术的新的波形设计.本文提出了基于GFDM信号的高精度载波测距方法,其主要包括GFDM信号粗同步、导频检测、多径提取、首径获取、延迟跟踪和载波相位测距等步骤.在此基础上,利用GFDM信号测距信息进行了室内定位性能评估.在典型室内会议场景下搭建了实测平台并对上述方法进行了验证.测试结果表明,通过所提方法,利用GFDM信号测距精度达到1.1 m(95%),定位精度优于2 m,相比于相同带宽的OFDM信号测距性能提高了21%.本文研究将为下一代移动通信室内定位技术提供有益参考. |
其他语种文摘
|
Generalized frequency division multiplexing(GFDM)is a novel multi-carrier modulation technology with the characteristics of subcarrier non-orthogonality and flexibility of time-frequency resources. GFDM is expected to become a new waveform design of mobile communication technology in the beyond fifth-generation(B5G)or sixth-generation(6G) era. This paper proposes a high-precision carrier ranging method based on GFDM signal, which mainly includes steps of coarse synchronization, pilot detection, multipath extraction, first path acquisition, delay tracking and carrier phase ranging. To verify the above-mentioned method, we built an experimental platform in typical indoor meeting scenarios. Test results showed that using GFDM signals the probability of ranging accuracy within 1.1 m is 95%, which is 21% better than the ranging performance of OFDM signals with the same bandwidth. In addition, the positioning error interval of GFDM is within 2 m. The research in this paper provides a useful reference for next-generation mobile communication indoor positioning technology. |
来源
|
电子学报
,2022,50(4):849-859 【核心库】
|
DOI
|
10.12263/DZXB.20211185
|
关键词
|
无线室内定位
;
广义频分复用
;
压缩感知
;
载波相位测距
;
到达时间差
|
地址
|
武汉大学, 测绘遥感信息工程国家重点实验室, 湖北, 武汉, 430079
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
湖北省重点研发计划
;
湖北珞珈实验室专项基金
;
武汉大学测绘遥感信息工程国家重点实验室自主科研基金
|
文献收藏号
|
CSCD:7190612
|
参考文献 共
26
共2页
|
1.
Zong B Q. 6G technologies: Key drivers, core requirements, system architectures, and enabling technologies.
IEEE Vehicular Technology Magazine,2019,14(3):18-27
|
CSCD被引
21
次
|
|
|
|
2.
缪祎晟. 基于统计分布的小麦农田多径衰落信道建模研究.
电子学报,2016,44(3):665-672
|
CSCD被引
3
次
|
|
|
|
3.
Kim J. M2M service platforms: Survey, issues, and enabling technologies.
IEEE Communications Surveys & Tutorials,2014,16(1):61-76
|
CSCD被引
4
次
|
|
|
|
4.
Wunder G. 5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications.
IEEE Communications Magazine,2014,52(2):97-105
|
CSCD被引
18
次
|
|
|
|
5.
Nekovee M. Quantifying performance requirements of vehicle-to-vehicle communication protocols for rear-end collision avoidance.
VTC Spring 2009-IEEE 69th Vehicular Technology Conference,2009:1-5
|
CSCD被引
1
次
|
|
|
|
6.
Van De Beek J. Out-of-band power suppression in OFDM.
IEEE Communications Letters,2008,12(9):609-611
|
CSCD被引
3
次
|
|
|
|
7.
Hossain E.
Dynamic Spectrum Access and Management in Cognitive Radio Networks,2009
|
CSCD被引
5
次
|
|
|
|
8.
Fettweis G. GFDM-generalized frequency division multiplexing.
VTC Spring 2009-IEEE 69th Vehicular Technology Conference,2009:1-4
|
CSCD被引
5
次
|
|
|
|
9.
李婷. 基于GFDM的空口波形实现及干扰抑制.
太赫兹科学与电子信息学报,2020,18(1):50-56
|
CSCD被引
1
次
|
|
|
|
10.
Datta R. GFDM interference cancellation for flexible cognitive radio PHY design.
2012 IEEE Vehicular Technology Conference,2012:1-5
|
CSCD被引
1
次
|
|
|
|
11.
Awoseyila A B. Improved preamble-aided timing estimation for OFDM systems.
IEEE Communications Letters,2008,12(11):825-827
|
CSCD被引
2
次
|
|
|
|
12.
You X H. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts.
Science China Information Sciences,2020,64(1):1-74
|
CSCD被引
13
次
|
|
|
|
13.
Hasyim R N. Carrier frequency offset estimation using cyclic prefix in GFDM systems for machine type communication application.
2018 8th International Conference on Intelligent Systems, Modelling and Simulation (ISMS),2018:126-130
|
CSCD被引
1
次
|
|
|
|
14.
Michailow N. Generalized frequency division multiplexing for 5th generation cellular networks.
IEEE Transactions on Communications,2014,62(9):3045-3061
|
CSCD被引
28
次
|
|
|
|
15.
陈锐志. 基于智能手机的室内定位技术的发展现状和挑战.
测绘学报,2017,46(10):1316-1326
|
CSCD被引
76
次
|
|
|
|
16.
Ferreira J S. GFDM frame design for 5G application scenarios.
Journal of Communication and Information Systems,2017,32(1):54-61
|
CSCD被引
1
次
|
|
|
|
17.
Chen Z. Fast fading channel estimation for OFDM systems with complexity reduction.
Chinese Journal of Electronics,2021,30(6):1173-1177
|
CSCD被引
1
次
|
|
|
|
18.
周凯. 雷达脉冲压缩低旁瓣发射波形和非匹配滤波联合设计方法.
电子学报,2021,49(9):1701-1707
|
CSCD被引
5
次
|
|
|
|
19.
Van De Beek J J. ML estimation of time and frequency offset in OFDM systems.
IEEE Transactions on Signal Processing,1997,45(7):1800-1805
|
CSCD被引
198
次
|
|
|
|
20.
Chen L. TOA estimation for positioning with DVB-T signals in outdoor static tests.
IEEE Transactions on Broadcasting,2015,61(4):625-638
|
CSCD被引
5
次
|
|
|
|
|