GNSS拒止环境下的伪卫星指纹定位方法
Pseudolite Fingerprint Positioning Method under GNSS Rejection Environment
查看参考文献25篇
文摘
|
伪卫星具有发射与天上卫星相同信号的能力,可以作为GNSS(Global Navigation Satellite System)信号遮挡环境下稳定可靠的定位信号源,使得基于现有终端硬件条件实现室外内连续高精度定位成为可能,因此逐渐成为室内定位领域的研究热点.本文提出了一种基于同源多通道伪卫星的指纹库匹配定位方法,利用顾及位置信息的变分自编码网络(Variational Auto-Encoder,VAE)学习伪卫星载波相位信息在隐含空间下的概率分布特征,建立伪卫星观测数据隐含特征与室内位置间的映射关系,进而实现GNSS拒止环境下的指纹匹配定位.针对指纹定位结果波动大的问题,本文提出一种粒子滤波融合处理方法,提高了定位系统的稳定性和定位精度.本文在试验环境以及机场环境下,通过大量试验验证了该定位算法在动态和静态下的定位性能,并与常用的基于指纹库匹配的定位方法进行了比较.结果表明,在室内试验环境下,动态平均定位精度为0.39 m,95%的定位误差小于0.85 m,在真实机场环境下,动态平均定位精度为0.75 m,最大定位误差为1.69 m,92%的定位误差小于1 m,验证了算法的有效性. |
其他语种文摘
|
Pseudolites have the ability to transmit the same signals as GNSS(Global Navigation Satellite System)satellites, and can provide stable and reliable positioning signals for the navigation signal obstructed environment, making it possible to achieve continuous high-precision positioning outdoors based on the existing terminal hardware conditions. Therefore, it has gradually become a research hotspot in the field of indoor positioning. In this paper, a fingerprint database matching and positioning method based on homologous multi-channel pseudolites is proposed. The variational autoencoder network that takes into account the position information is designed to learn the probability distribution characteristics of the pseudolite carrier phase information in the hidden space. Then, the mapping relationship between the hidden features of the pseudolite observation data and the indoor location is established. After this, aiming at the problem of large fluctuation of fingerprint location results, a particle filter fusion processing method is proposed to improve the stability and accuracy of the location system. In the experimental environment and airport environment, a large number of experiments verify the positioning performance of the positioning algorithm under dynamic and static conditions, and compare it with the common positioning methods based on fingerprint database matching. The results show that the dynamic average positioning accuracy is 0.39 m in the indoor test environment, and 95% of the positioning error is better than 0.85 m. In the real airport environment, the dynamic average positioning accuracy is 0.75 m, the maximum positioning error is 1.69 m, and 92% of the positioning error is better than 1m. The effectiveness of the algorithm is verified. |
来源
|
电子学报
,2022,50(4):811-822 【核心库】
|
DOI
|
10.12263/DZXB.20211167
|
关键词
|
伪卫星
;
载波相位
;
室内定位
;
指纹匹配
;
机器学习
|
地址
|
1.
东南大学仪器科学与工程学院, 微惯性仪表与先进导航技术教育部重点实验室, 江苏, 南京, 210096
2.
卫星导航系统与装备技术国家重点实验室, 卫星导航系统与装备技术国家重点实验室, 河北, 石家庄, 050081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
测绘学;电子技术、通信技术 |
基金
|
国家重点研发计划项目
|
文献收藏号
|
CSCD:7190608
|
参考文献 共
25
共2页
|
1.
Gan X L. Indoor positioning technology based on map information perception.
The Journal of Engineering,2018,2018(16):1561-1566
|
CSCD被引
1
次
|
|
|
|
2.
Wang J. Pseudolite applications in positioning and navigation: Progress and problems.
Journal of Global Positioning Systems,2002,1(1):48-56
|
CSCD被引
21
次
|
|
|
|
3.
Yang C C. WiFi-based indoor positioning.
IEEE Communications Magazine,2015,53(3):150-157
|
CSCD被引
11
次
|
|
|
|
4.
Hernandez N. Continuous space estimation: Increasing WiFi-based indoor localization resolution without increasing the site-survey effort.
Sensors(Basel, Switzerland),2017,17(1):147
|
CSCD被引
1
次
|
|
|
|
5.
Xu H. An RFID indoor positioning algorithm based on Bayesian probability and K-nearest neighbor.
Sensors(Basel, Switzerland),2017,17(8):1806
|
CSCD被引
11
次
|
|
|
|
6.
Murata S. Accurate indoor positioning system using near-ultrasonic sound from a smartphone.
2014 Eighth International Conference on Next Generation Mobile Apps, Services and Technologies,2014:13-18
|
CSCD被引
1
次
|
|
|
|
7.
Peng Q. Three-dimensional high-precision indoor positioning strategy using Tabu search based on visible light communication.
Optical Engineering,2018,57:016101
|
CSCD被引
1
次
|
|
|
|
8.
De Angelis G. Positioning techniques in indoor environments based on stochastic modeling of UWB round-trip-time measurements.
IEEE Transactions on Intelligent Transportation Systems,2016,17(8):2272-2281
|
CSCD被引
16
次
|
|
|
|
9.
De Blasio G. Study on an indoor positioning system for harsh environments based on Wi-Fi and bluetooth low energy.
Sensors(Basel, Switzerland),2017,17(6):1299
|
CSCD被引
4
次
|
|
|
|
10.
Canton Paterna V. A bluetooth low energy indoor positioning system with channel diversity, weighted trilateration and Kalman filtering.
Sensors(Basel, Switzerland),2017,17(12):2927
|
CSCD被引
3
次
|
|
|
|
11.
Wu J. Indoor positioning by using scanning infrared laser and ultrasonic technology.
Optics and Precision Engineering,2016,24(10):2417-2423
|
CSCD被引
1
次
|
|
|
|
12.
Nilsson J O. Accurate indoor positioning of firefighters using dual foot-mounted inertial sensors and inter-agent ranging.
2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014,2014:631-636
|
CSCD被引
1
次
|
|
|
|
13.
Xia H. Using multiple barometers to detect the floor location of smart phones with built-in barometric sensors for indoor positioning.
Sensors(Basel, Switzerland),2015,15(4):7857-7877
|
CSCD被引
5
次
|
|
|
|
14.
Fujii K. Hyperbolic positioning with antenna arrays and multi-channel pseudolite for indoor localization.
Sensors(Basel, Switzerland),2015,15(10):25157-25175
|
CSCD被引
3
次
|
|
|
|
15.
Song X D. A novel convolutional neural network based indoor localization framework with WiFi fingerprinting.
IEEE Access,2019,7:110698-110709
|
CSCD被引
3
次
|
|
|
|
16.
Wang F. Joint activity recognition and indoor localization with WiFi fingerprints.
IEEE Access,2019,7:80058-80068
|
CSCD被引
5
次
|
|
|
|
17.
Gu X Y. An Improved Method of Ambiguity Resolution in GNSS Positioning.
Chinese Journal of Electronics,2019,28(1):215-222
|
CSCD被引
4
次
|
|
|
|
18.
Cao Y. Research on High Precision Tracking Method of Guided Transport Vehicle Based on Autonomous Combination Positioning.
Chinese Journal of Electronics,2020,29(4):779-785
|
CSCD被引
2
次
|
|
|
|
19.
Peng Z. Indoor floor plan construction through sensing data collected from smartphones.
IEEE Internet of Things Journal,2018,5(6):4351-4364
|
CSCD被引
1
次
|
|
|
|
20.
Kingma D P. Auto-encoding variational Bayes.
CoRR,2013:abs/1312.6114
|
CSCD被引
1
次
|
|
|
|
|