微波光子四倍频复合雷达信号生成及目标多维度探测
Frequency-Quadrupled Radar Composite Signal Generation and Multi- Dimensional Target Detection Enabled by Microwave Photonics
查看参考文献21篇
文摘
|
在雷达系统中,为了实现对目标的高精度、多维度测量,产生雷达信号是一个基本而又重要的环节.本文提出了一种微波光子四倍频复合雷达信号产生方法,该复合雷达信号包括单啁啾线性调频信号和单音微波信号.利用单音微波信号和单啁啾线性调频信号实现目标径向速度的测量,使用单啁啾线性调频信号实现目标距离测量和高分辨率微波成像.在发射端,使用微波光子四倍频技术生成了瞬时带宽为2 GHz的正啁啾线性调频信号和频率为13.2 GHz的单音微波信号.在接收端,目标回波信号经去斜后用来实现距离和径向速度测量以及高分辨率逆合成孔径成像.实验结果表明,测量得到的目标的距离和径向速度绝对误差分别不超过4.2 cm和1.7 cm/s,多个探测目标成像结果清晰可辨. |
其他语种文摘
|
In radar systems, to achieve high-precision multi-dimensional measurement of targets, radar signal generation is a basic and important function. A microwave photonic frequency-quadrupled composite radar signal generation approach is proposed. The composite radar signal includes a single-chirped linearly frequency-modulated(LFM)signal and a single-tone microwave signal. The single-tone microwave signal and the single-chirped LFM signal are jointly used to measure the radial velocity of a target, while the single-chirped LFM signal is used to measure the distance of the target and implement the high-resolution microwave imaging. In the transmitter, an up-chirped LFM signal with an instantaneous bandwidth of 2 GHz and a 13.2 GHz single-tone microwave signal are generated using a photonic frequency quadrupler. In the receiver, target echo signals are de-chirped and then used to achieve the measurement of distance and radial velocity and the high-resolution ISAR imaging. Experimental results show that the absolute measurement errors of distance and radial velocity are no more than 4.2 cm and 1.7 cm/s, respectively, and the imaging results of multiple targets are clear and identifiable. |
来源
|
电子学报
,2022,50(4):796-803 【核心库】
|
DOI
|
10.12263/DZXB.20211091
|
关键词
|
微波光子学
;
雷达
;
四倍频信号
;
距离和速度测量
;
逆合成孔径成像
|
地址
|
华东师范大学通信与电子工程学院, 上海市多维度信息处理重点实验室, 上海, 200241
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
上海市自然科学基金
;
国家自然科学基金
;
区域光纤通信网与新型光通信系统国家重点实验室基金
|
文献收藏号
|
CSCD:7190606
|
参考文献 共
21
共2页
|
1.
Gini F.
Waveform Design and Diversity for Advanced Radar Systems,2012
|
CSCD被引
12
次
|
|
|
|
2.
Blunt S D. Overview of radar waveform diversity.
IEEE Aerospace and Electronic Systems Magazine,2016,31(11):2-42
|
CSCD被引
19
次
|
|
|
|
3.
Zhang H. Software-defined six-port radar technique for precision range measurements.
IEEE Sensors Journal,2008,8(10):1745-1751
|
CSCD被引
7
次
|
|
|
|
4.
Roehr S. Precise distance and velocity measurement for real time locating in multipath environments using a frequency-modulated continuouswave secondary radar approach.
IEEE Transactions on Microwave Theory and Techniques,2008,56(10):2329-2339
|
CSCD被引
2
次
|
|
|
|
5.
Chen V C.
Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications,2014
|
CSCD被引
6
次
|
|
|
|
6.
陈宝欣. 多频连续波雷达与角度-距离联合估计方法.
电子学报,2020,48(2):375-383
|
CSCD被引
3
次
|
|
|
|
7.
Tong Y T. Advanced photonics-based radar signal generation technology for practical radar application.
Journal of Lightwave Technology,2021,39(11):3371-3382
|
CSCD被引
1
次
|
|
|
|
8.
Ghelfi P. Photonics in radar systems: RF integration for state-of-the-art functionality.
IEEE Microwave Magazine,2015,16(8):74-83
|
CSCD被引
9
次
|
|
|
|
9.
Serafino G. Toward a new generation of radar systems based on microwave photonic technologies.
Journal of Lightwave Technology,2019,37(2):643-650
|
CSCD被引
8
次
|
|
|
|
10.
Pan S L. Microwave photonic radars.
Journal of Lightwave Technology,2020,38(19):5450-5484
|
CSCD被引
10
次
|
|
|
|
11.
Pan S L. Microwave photonic array radars.
IEEE Journal of Microwaves,2021,1(1):176-190
|
CSCD被引
6
次
|
|
|
|
12.
Chen Y. Photonic generation of tunable frequency-multiplied phase-coded microwave waveforms.
IEEE Photonics Technology Letters,2018,30(13):1230-1233
|
CSCD被引
1
次
|
|
|
|
13.
Chen Y. Simultaneous multi-frequency phasecoded microwave signal generation at six different frequencies using a DP-BPSK modulator.
Journal of Lightwave Technology,2019,37(10):2293-2299
|
CSCD被引
2
次
|
|
|
|
14.
Zhang K. Photonics-based multi-band linearly frequency modulated signal generation and anti-chromatic dispersion transmission.
Optics Express,2020,28(6):8350-8362
|
CSCD被引
2
次
|
|
|
|
15.
Zhang Y M. Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation.
Journal of Lightwave Technology,2017,35(10):1821-1829
|
CSCD被引
4
次
|
|
|
|
16.
Zhang F Z. Photonicsbased broadband radar for high-resolution and real-time inverse synthetic aperture imaging.
Optics Express,2017,25(14):16274-16281
|
CSCD被引
10
次
|
|
|
|
17.
Wang A L. Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information.
Optics Express,2018,26(16):20708-20717
|
CSCD被引
9
次
|
|
|
|
18.
Cheng H X. High-resolution range and velocity measurement based on photonic LFM microwave signal generation and detection.
IEEE Photonics Journal,2019,11(1):1-8
|
CSCD被引
1
次
|
|
|
|
19.
Zhang J X. Photonics-based simultaneous measurement of distance and velocity using multi-band LFM microwave signals with opposite chirps.
Optics Express,2019,27(20):27580-27591
|
CSCD被引
3
次
|
|
|
|
20.
Peng S W. Photonics-based simultaneous distance and velocity measurement of multiple targets utilizing dual-band symmetrical triangular linear frequency-modulated waveforms.
Optics Express,2020,28(11):16270-16279
|
CSCD被引
1
次
|
|
|
|
|