激光重熔改性热障涂层抗CMAS腐蚀特性
Improving molten CMAS resistance of thermal barrier coatings by modified laser remelting method
查看参考文献37篇
文摘
|
采用激光对大气等离子喷涂7YSZ热障涂层进行表面重熔处理,探讨基体预热和Al_2O_3溶胶涂敷对激光重熔层裂纹愈合的影响,研究处理后热障涂层的耐CMAS熔盐腐蚀性能。结果表明:涂层经过激光重熔和基体预热后的激光重熔处理后,与未经重熔处理涂层的CMAS腐蚀厚度基本相同;而采用表面Al_2O_3溶胶涂敷加激光重熔的热障涂层的CMAS腐蚀厚度明显减小,表明Al_2O_3溶胶涂敷加激光重熔工艺可以有效地减轻CMAS熔盐侵蚀,其机理是表面形成的Al_2O_3薄膜溶于CMAS后生成了难熔晶体钙长石,降低了熔盐的流动性和腐蚀性。 |
其他语种文摘
|
7% yttria stabilized zirconia (7YSZ) thermal barrier coatings (TBCs) prepared by air plasma spray were laser-remelted, and subsequently pre-heated and Al_2O_3 sol-gel repaired for restraining the crack growth in the remelted coatings. The as-prepared coatings were exposed to high temperature molten CaO-MgO-Al_2O_3-SiO_2 (CMAS) to explore their corrosion resistance. The results show that both the laser remelted and the pre-heated, the laser-remelted coatings are densified by CMAS attack. In addition, the thickness of the densified layers is on the same order of that of the non-remelted coatings. Despite of this, the densified layer in the laser remelted coating repaired by Al_2O_3 sol-gel is much thinner than the other coatings. This indicates that Al_2O_3 sol-gel repairing coupling with laser-remelted method can effectively improve the CMAS resistance of 7YSZ TBCs due to the refractory anorthite generated during corrosion process. This refractory compound produced between CMAS and Al_2O_3 sol-gel is capable to decrease the mobility and corrosivity of the CMAS. |
来源
|
航空材料学报
,2022,42(1):40-49 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2021.000140
|
关键词
|
激光重熔
;
热障涂层
;
Al_2O_3溶胶涂覆
;
CMAS腐蚀
|
地址
|
1.
中国空气动力研究与发展中心超高速空气动力研究所, 四川, 绵阳, 621000
2.
清华大学, 新型陶瓷与精细工艺国家重点实验室, 北京, 100084
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
航空 |
基金
|
国家自然科学基金
;
中国空气动力研究与发展中心基础前沿项目
|
文献收藏号
|
CSCD:7182251
|
参考文献 共
37
共2页
|
1.
Padture N P. Thermal barrier coatings for gas-turbine engine applications.
Science,2002,296:280-284
|
CSCD被引
596
次
|
|
|
|
2.
徐惠彬. 航空发动机热障涂层材料体系的研究.
航空学报,2000,21(1):7-12
|
CSCD被引
61
次
|
|
|
|
3.
李钊. 热障涂层技术在航空发动机涡轮叶片上的应用.
航空发动机,2015,41(5):67-71
|
CSCD被引
4
次
|
|
|
|
4.
Shen Z Y. Morphological evolution and failure of LZC/YSZ DC L TBCs by electron beam-physical vapor deposition.
Materialia,2018,4:340-347
|
CSCD被引
7
次
|
|
|
|
5.
何箐. 一种新型CMAS耦合条件下热障涂层热循环实验方法.
材料工程,2014(12):92-98
|
CSCD被引
3
次
|
|
|
|
6.
马景涛. 高温燃气下CMAS混合盐覆盖对YSZ热障涂层性能的影响.
金属热处理,2017,42(9):160-167
|
CSCD被引
5
次
|
|
|
|
7.
赵鹏森. 稀土掺杂热障涂层的研究进展.
航空材料学报,2021,41(4):83-51
|
CSCD被引
10
次
|
|
|
|
8.
Wellman R. CMAS corrosion of EB PVD TBCs: identifying the minimum level to initiate damage.
Int Journal of Refractory Metals & Hard Materials,2010,28:124-132
|
CSCD被引
20
次
|
|
|
|
9.
何箐. 不同结构8YSZ热障涂层对CMAS沉积物的防护作用.
中国表面工程,2016,29(4):86-95
|
CSCD被引
9
次
|
|
|
|
10.
王婕. 循环热载荷下CMAS侵蚀对EB-PVD热障涂层微裂纹特性的影响.
航空发动机,2020,46(4):92-97
|
CSCD被引
1
次
|
|
|
|
11.
Wu J. Evaluation of plasm prayed YSZ thermal barrier coating with the CMAS deposits infiltration using impedance spectroscopy.
Chinese Materials Research Society,2012,22(1):40-47
|
CSCD被引
1
次
|
|
|
|
12.
华云峰. 热障涂层抗腐蚀研究进展.
稀有金属材料与工程,2013,42(9):1976-1980
|
CSCD被引
16
次
|
|
|
|
13.
Kramer S. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration.
Materials Science and Engineering: A,2008,490:26-35
|
CSCD被引
29
次
|
|
|
|
14.
Krause A R. Interaction between ceramic powder and molten calcia-magnesia-alumino-silicate (CMAS) glass, and its implication on CMAS-resistant thermal barrier coatings.
Scripta Materialia,2016,112:118-122
|
CSCD被引
12
次
|
|
|
|
15.
Krause A R. Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings.
Acta Materialia,2016,105:355-366
|
CSCD被引
30
次
|
|
|
|
16.
Kramer S. Thermochemical interaction of thermal barrier coatings with molten CaOMgO-Al_2O_3-SiO_2 (CMAS) deposits.
Journal of the American Ceramic Society,2006,89(10):3167-3175
|
CSCD被引
54
次
|
|
|
|
17.
Levi C G. Environmental degradation of thermal barrier coatings by molten deposits.
Materials Research Society,2012,37:932-941
|
CSCD被引
39
次
|
|
|
|
18.
Shrn Z Y. Effects of Er stabilization on thermal property and failure behavior of Gd_2Zr_2O_7 thermal barrier coatings.
Corrosion Science,2021,185:190418
|
CSCD被引
10
次
|
|
|
|
19.
Pollock T M. Multifunctional coating interlayers for thermal-barrier systems.
Materials Research Society,2012,37:923-931
|
CSCD被引
10
次
|
|
|
|
20.
Shen Z Y. LaGdZrO/YSZ thermal barrier coatings by EB-PVD: microstructure, thermal properties and failure mechanism.
Chemical Engineering Journal Advances,2021,5:100073
|
CSCD被引
6
次
|
|
|
|
|