等离子喷涂工艺参数对GdPO_4热障涂层组织结构和结合强度的影响
Effects of air plasma spraying parameters on microstructure and bonding strength of GdPO_4 thermal barrier coatings
查看参考文献29篇
文摘
|
随着航空发动机涡轮进口温度提升,目前最广泛使用的Y_2O_3部分稳定ZrO_2(YSZ)热障涂层(TBCs)已难以满足需求,亟须发展新一代超高温TBCs。GdPO_4是一种极具应用前景的TBCs材料。本工作采用等离子喷涂方法制备GdPO_4/YSZ双陶瓷层结构TBCs,研究喷涂工艺参数特别是喷涂功率对GdPO_4陶瓷涂层相组成、表面形貌、微观结构以及结合强度的影响。结果表明:等离子喷涂GdPO_4过程中会有元素P损耗,得到的涂层除了GdPO_4外,还有一些Gd_3PO_7相;随着喷涂功率降低,Gd_3PO_7相含量减少;GdPO_4陶瓷涂层的主体结构由充分熔融的喷涂粒子堆垛构成,其中镶嵌有未熔化粒子构成的微区;随着喷涂功率降低,未熔化微区增多,涂层厚度降低; GdPO_4/YSZ TBCs的结合强度随喷涂功率降低而减小,主要是由于未熔化微区增多降低了涂层的内聚力;因此,低喷涂功率不利于涂层的结合强度。 |
其他语种文摘
|
With the increase of the turbine inlet temperature of gas engines, the widely used Y_2O_3 partially stabilized ZrO_2(YSZ) thermal barrier coatings (TBCs) have been unable to meet the requirements, and new generation TBCs that can survive ultra hightemperatures are urgently needed. Among many TBC candidates, GdPO_4 has a great application prospect. In this study, GdPO_4/YSZ TBCs were prepared by air plasma spraying, and the effects of preparation parameters, especially spraying power on the phase composition, surface morphology, microstructure and bond strength of GdPO_4 coatings were investigated. The results show that the P loss takes place during spraying, and both GdPO_4 and Gd_3PO_7 phases are detectable in the final topcoats, the content of the latter decreases by reducing the spraying power. The GdPO_4 coating microstructure is mainly composed of piles of fully melted spray particles, among which there is porous micro-zone consisting of unmelted particles. With the decrease of the spraying power, the content of the micro-zone increases, and the coating thickness significantly decreases. The bonding strength of GdPO_4/YSZ TBCs decreases with the decrease of spraying power, which is mainly because the cohesion of coating decreases with the increase of unmelted micro-zone. Therefore, low spraying power is not beneficial to the coating bonding strength. |
来源
|
航空材料学报
,2022,42(1):25-32 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2021.000162
|
关键词
|
热障涂层
;
GdPO_4
;
等离子喷涂
;
相组成
;
微观结构
;
结合强度
|
地址
|
中国航发沈阳黎明航空发动机有限责任公司, 沈阳, 110043
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
航空 |
基金
|
国家重大科技专项
;
辽宁省“兴辽英才计划”项目
;
沈阳市中青年科技创新人才支持计划项目
|
文献收藏号
|
CSCD:7182249
|
参考文献 共
29
共2页
|
1.
Vaßen R. Overview on advanced thermal barrier coatings.
Surface and Coatings Technology,2010,205(4):938-942
|
CSCD被引
101
次
|
|
|
|
2.
郭洪波. 先进航空发动机热障涂层技术研究进展.
中国材料进展,2009,28(9/10):18-26
|
CSCD被引
98
次
|
|
|
|
3.
李民. 航空发动机用高温防护涂层研究进展.
中国表面工程,2012,25(1):16-21
|
CSCD被引
22
次
|
|
|
|
4.
Guo H B. Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density.
Surface & Coatings Technology,2004,186(3):353-363
|
CSCD被引
28
次
|
|
|
|
5.
石佳. 等离子物理气相沉积热障涂层研究进展.
航空材料学报,2018,38(2):1-9
|
CSCD被引
17
次
|
|
|
|
6.
郭磊. 航空发动机热障涂层的CMAS腐蚀行为与防护方法.
金属学报,2021,57(9):1184-1198
|
CSCD被引
13
次
|
|
|
|
7.
庞铭. 结构参数对等离子喷涂Mo/8YSZ功能梯度热障涂层残余应力的影响.
航空材料学报,2020,40(6):23-32
|
CSCD被引
8
次
|
|
|
|
8.
魏晓东. 氧化物掺杂YSZ热障涂层的最新研究进展.
表面技术,2020,49(6):92-103
|
CSCD被引
15
次
|
|
|
|
9.
Guo L. Microstructure modification of Y_2O_3 stabilized ZrO_2 thermal barrier coatings by laser glazing and the effects on the hot corrosion resistance.
Journal of Advanced Ceramics,2020,9(2):232-242
|
CSCD被引
16
次
|
|
|
|
10.
Levi C G. Environmental degradation of thermal barrier coatings by molten deposits.
MRS Bulletin,2012,37(10):932-941
|
CSCD被引
39
次
|
|
|
|
11.
Poerschke D L. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions.
Annual Review of Materials Research,2017,47(1):297-330
|
CSCD被引
29
次
|
|
|
|
12.
Peng H. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits.
Progress in Natural Science-Materials International,2012,22(5):461-467
|
CSCD被引
21
次
|
|
|
|
13.
杨姗洁. 热障涂层在CMAS环境下的失效与防护.
航空材料学报,2018,38(2):43-51
|
CSCD被引
19
次
|
|
|
|
14.
Zhu R B. Fabrication and growing kinetics of highly dispersed gadolinium zirconate nanoparticles.
Research and Application of Materials Science,2019,1(1):28-34
|
CSCD被引
2
次
|
|
|
|
15.
Kramer S. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts.
Journal of the American Ceramic Society,2015,98(3):1013-1018
|
CSCD被引
1
次
|
|
|
|
16.
Guo L. GdPO_4 as a novel candidate for thermal barrier coating applications at elevated temperatures.
Surface & Coatings Technology,2018,349:400-406
|
CSCD被引
13
次
|
|
|
|
17.
Gao L H. Plasma-sprayed La_2Ce_2O_7 thermal barrier coatings against calcium-magnesium-alumina-silicate penetration.
Journal of the European Ceramic Society,2014,34(10):2553-2561
|
CSCD被引
24
次
|
|
|
|
18.
Xue Z L. Influence of Yb~(3+) doping on phase stability and thermophysical properties of (Y_(1-x)Yb_x)_3Al_5O_(12) under high temperature.
Ceramics International,2017,43(9):7153-7158
|
CSCD被引
6
次
|
|
|
|
19.
Wan C. Ultralow thermal conductivity in highly anion-defective aluminates.
Physical Review Letters,2008,101(8):085901
|
CSCD被引
11
次
|
|
|
|
20.
Cao X Q. Ceramic materials for thermal barrier coatings.
Journal of the European Ceramic Society,2004,24(21):1-10
|
CSCD被引
216
次
|
|
|
|
|