航空发动机和工业燃气轮机热喷涂热障涂层用金属黏结层:回顾与展望
Metallic bond coats for thermally-sprayed thermal barrier coatings applied to aero-engines and industrial gas turbines: review and prospect
查看参考文献38篇
文摘
|
超音速火焰喷涂制作的金属黏结层加料浆喷涂制作的柱状晶结构陶瓷隔热层被视作新一代航空发动机和燃气轮机用热喷涂热障涂层,其中采用的MCrAlY金属黏结层正朝着长寿命、低成本、适用于新燃料的方向发展。本文综述近年来航空发动机和燃气轮机热端部件热障涂层用MCrAlY金属黏结层研究进展,并对涂层的结构设计与成分设计进行探讨。 |
其他语种文摘
|
The MCrAlY bond coats used for thermally-sprayed thermal barrier coatings applied to aeroengines and industrial gas turbines are reached their temperature limits. The further development is aiming to extend service life, low production cost and compatibility with new fuels. The new MCrAlYs have to be oxidation resistant and spallation resistant, and able to prevent SRZ formation caused by the diffusion with superalloy substrate, and to avoid the damage of thermo-mechanical properties. This paper reviewed recent developments in this area, and proposed a composite structured low-β / near-γ' type MCrAlY with a very low ϕ value and CTE closed to Al_2O_3 to achieve the target. This approach may be cost effective, and more attractive to aeroengine and industrial gas turbine manufacturers, as well as coating developers and research institutions. Meanwhile, big data analysis will help to design new coating composition, speed up the development process and reduce R&D cost, lead to the findings of more durable thermal barrier coatings for aeroengine and industrial gas turbine applications. |
来源
|
航空材料学报
,2022,42(1):15-24 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2021.000217
|
关键词
|
燃气轮机
;
热障涂层
;
金属黏结层
;
长寿命
;
低成本
;
成分设计
|
地址
|
1.
昆明理工大学材料科学与工程学院, 昆明, 650093
2.
中国航发商用航空发动机有限责任公司研发中心材料工艺部, 上海, 200241
3.
上海电气燃气轮机有限公司燃气轮机研究所, 上海, 200240
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
一般工业技术 |
文献收藏号
|
CSCD:7182248
|
参考文献 共
38
共2页
|
1.
Bennett A. Properties of thermal barrier coatings.
Materials Science and Technology,1986,2:257-261
|
CSCD被引
4
次
|
|
|
|
2.
Miller R A. Current status of thermal barrier coatings: an overview.
Surface and Coatings Technology,1987,30:1-11
|
CSCD被引
77
次
|
|
|
|
3.
Meier S M. Ceramic thermal barrier coatings for commercial gas turbine engines.
Journal of Metals,1991,43:50-53
|
CSCD被引
9
次
|
|
|
|
4.
Goward G W. Progress in coatings for gas turbine airfoils.
Surface and Coatings Technology,1998,108/109:73-79
|
CSCD被引
111
次
|
|
|
|
5.
Padture N P. Thermal barrier coatings for gas-turbine engine applications.
Science,2002,296:280-284
|
CSCD被引
596
次
|
|
|
|
6.
OERLIKON METCO.
Metco materials E-guide,2021
|
CSCD被引
1
次
|
|
|
|
7.
Nicholls J R. Cyclic oxidation-guidelines for test standardization, aimed at the assessment of service behavior.
Materials at High Temperatures,2000,17(3):413-428
|
CSCD被引
1
次
|
|
|
|
8.
Madhwal M. Failure mechanisms of dense vertically-cracked thermal barrier coatings.
Materials Science and Engineering: A,2004,384:151-161
|
CSCD被引
10
次
|
|
|
|
9.
Tang Z. Novel thermal barrier coatings produced by axial suspension plasma spray.
Proceedings of International Thermal Spray Conference and Exposition,2011
|
CSCD被引
1
次
|
|
|
|
10.
Lima R S. APS, SPS and EB-PVD YSZ TBCs: comparing the erosion wear performance.
SURFTEC Meeting,2012
|
CSCD被引
1
次
|
|
|
|
11.
Shen Z. GdYbZrO thermal barrier coatings by EB-PVD: phase, microstructure, thermal properties and failure.
Surfaces and Interfaces,2021,24:101123
|
CSCD被引
8
次
|
|
|
|
12.
Shen Z. Effects of Er stabilization on thermal property and failure behavior of Gd_2Zr_2O_7 thermal barrier coatings.
Corrosion Science,2021,185:109418
|
CSCD被引
10
次
|
|
|
|
13.
Pollock T M. Multifunctional coating interlayers for thermal-barrier systems.
MRS Bulletin,2012,37:923-931
|
CSCD被引
10
次
|
|
|
|
14.
Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects.
International Materials Reviews,2013,58(6):315-348
|
CSCD被引
70
次
|
|
|
|
15.
Chen W R. Oxidation and crack nucleation/growth in an air-plasma-sprayed thermal barrier coating with NiCrAlY bond coat.
Surface and Coatings Technology,2005,197:109-115
|
CSCD被引
17
次
|
|
|
|
16.
Trunova O. Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines-part I: experiments.
Surface and Coatings Technology,2008,202:5027-5032
|
CSCD被引
20
次
|
|
|
|
17.
Miller R A. Failure mechanisms of thermal barrier coatings exposed to elevated temperatures.
Thin Solid Films,1982,95:265-273
|
CSCD被引
28
次
|
|
|
|
18.
Demasi-Marcin J T. Mechanism of degradation and failure in a plasma deposited thermal barrier coating, ASME Paper 89-GT-132.
Gas Turbine and Aeroengine Congress and Exposition,1989
|
CSCD被引
1
次
|
|
|
|
19.
Wright P K. Mechanisms governing the performance of thermal barrier coatings.
Current Opinion on Solid State Materials Science,1999,4:255-265
|
CSCD被引
24
次
|
|
|
|
20.
Rabiei A. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings.
Acta Materialia,2000,48:3963-3976
|
CSCD被引
102
次
|
|
|
|
|