高性能软磁合金的研究进展
Research progress in high-performance soft magnetic alloys
查看参考文献112篇
文摘
|
软磁材料是一种极为重要且应用十分广泛的能源材料,近年来,随着磁性元件的日益高频化和小型化,以及节能环保的号召,开发和研究高性能软磁材料具有重要意义。本工作概述了软磁合金的发展历史,重点归纳出各类软磁合金(包括传统软磁合金、非晶/纳米晶软磁合金、高熵软磁合金)的成分、微观组织、磁性能以及应用范围,并总结出不同软磁合金的优、缺点;指出典型合金的微观组织对合金软磁性能(尤其矫顽力)具有关键性的主导作用,进而探讨了影响软磁合金矫顽力的因素及其微观机制,发现控制晶粒尺寸(或纳米粒子尺寸)是获得低矫顽力的关键,并描述了矫顽力的微观影响机制在高熵软磁合金中的发展;最后,展望了高熵软磁合金因多主元混合的成分特性带来的组织多样化,更有利于实现对合金性能的调控,并有望作为新一代高温软磁体材料。 |
其他语种文摘
|
Soft magnetic materials have been widely applied in modern industries as energy materials. In recent years,with the increasingly high frequency and miniaturization of magnetic components,as well as the call of energy conservation and environmental protection,the development and research of high-performance soft magnetic material are of great important significance.The present work generalized the development history of soft magnetic alloys comprehensively,from the viewpoints of chemical compositions,microstructures,magnetic properties,application fields,and advantages and disadvantages of different soft magnetic alloys.The involved alloy systems include primarily traditional crystalline alloys,amorphous/nanocrystalline alloys,and high entropy alloys.It is found that the microstructure induced by alloy compositions plays a dominant role in soft magnetic property, especially the coercivity.Then the influence factors on the coercivity of alloys and the related micromechanisms were discussed,in which the grain size in traditional alloys or particle size in nanocrystalline alloys is crucial to achieve lower coercivity.Therefore,the development of the micromechanisms of coercivity in high entropy soft magnetic alloys was described.Finally,it was expected that high entropy soft magnetic alloys would be more beneficial to modulate alloy properties due to the diversification of microstructures induced by the mixing of multi-principal elements,which shows great potential to serve as a new generation of high temperature soft magnet materials. |
来源
|
材料工程
,2022,50(3):69-80 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000299
|
关键词
|
软磁合金
;
高熵合金
;
铁基合金
;
非晶/纳米晶合金
;
矫顽力
;
微观组织
|
地址
|
1.
大连理工大学, 三束材料改性教育部重点实验室, 辽宁, 大连, 116024
2.
大连理工大学材料科学与工程学院, 辽宁, 大连, 116024
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
电工技术 |
基金
|
国家自然科学基金项目
;
辽宁省自然科学基金
;
中央高校基本科研业务费专项资金
|
文献收藏号
|
CSCD:7181249
|
参考文献 共
112
共6页
|
1.
戴道生.
铁磁学. (2版),2017
|
CSCD被引
1
次
|
|
|
|
2.
科埃.
磁学和磁性材料,2014
|
CSCD被引
1
次
|
|
|
|
3.
Ali M. A review of processing techniques for Fe-Ni soft magnetic materials.
Materials and Manufacturing Processes,2019,34(14):1580-1604
|
CSCD被引
2
次
|
|
|
|
4.
Sundar R S. Soft magnetic FeCo alloys: alloy development, processing, and properties.
International Materials Reviews,2005,50(3):157-192
|
CSCD被引
18
次
|
|
|
|
5.
Qiao J L. Development of thin-gauge low iron loss non-oriented silicon steel.
Metallurgical Research & Technology,2021,118(1):113
|
CSCD被引
4
次
|
|
|
|
6.
刘君昌. 电力电子中高频软磁材料的研究进展.
材料工程,2017,45(5):127-134
|
CSCD被引
6
次
|
|
|
|
7.
程戎. 高温高饱和磁通密度软磁铁氧体研究进展.
中国陶瓷,2018,54(12):1-6
|
CSCD被引
3
次
|
|
|
|
8.
Alben R. Random anisotropy in amorphous ferromagnets.
Journal of Applied Physics,1978,49(3):1653-1658
|
CSCD被引
17
次
|
|
|
|
9.
Yoshizawa Y. New Fe-based soft magnetic alloys composed of ultrafine grain structure.
Journal of Applied Physics,1988,64(10):6044-6046
|
CSCD被引
266
次
|
|
|
|
10.
Suzuki K. High saturation magnetization and soft magnetic properties of bcc Fe-Zr-B alloys with ultrafine grain structure.
Materials Transactions JIM,1990,31(8):743-746
|
CSCD被引
39
次
|
|
|
|
11.
Willard M A. Structure and magnetic properties of (Fe_(0.5) Co_(0.5))_(88) Zr_7 B_4 Cu_1 nanocrystalline alloys.
Journal of Applied Physics,1998,84(12):6773-6777
|
CSCD被引
60
次
|
|
|
|
12.
Herzer G. Modern soft magnets: amorphous and nanocrystalline materials.
Acta Materialia,2013,61(3):718-734
|
CSCD被引
66
次
|
|
|
|
13.
Li Y H. Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing α-Fe nanoparticles—Structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys.
Journal of Materials Science & Technology,2021,65:171-181
|
CSCD被引
9
次
|
|
|
|
14.
Li Y H. Effects of annealing temperature and heating rate on microstructure, magnetic, and mechanical properties of high-Bs Fe_(81.7-x)Si_4 B_(13)Nb_xCu_(1.3) nanocrystalline alloys.
Journal of Materials Science,2021,56(3):2572-2583
|
CSCD被引
4
次
|
|
|
|
15.
Yao K F. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys.
Acta Physica Sinica,2018,67(1):016101
|
CSCD被引
9
次
|
|
|
|
16.
Zuo T T. Tailoring magnetic behavior of CoFeMnNiX (X=Al, Cr,Ga, and Sn) high entropy alloys by metal doping.
Acta Materialia,2017,130:10-18
|
CSCD被引
16
次
|
|
|
|
17.
Zhang Y. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability.
Scientific Reports,2013,3:1455
|
CSCD被引
41
次
|
|
|
|
18.
Ma Y. A novel soft-magnetic B2-based multiprincipal-element alloy with a uniform distribution of coherent body-centered-cubic nanoprecipitates.
Advanced Materials,2021:2006723
|
CSCD被引
17
次
|
|
|
|
19.
Zhou K X. FeCoNiAlSi high entropy alloys with exceptional fundamental and application-oriented magnetism.
Intermetallics,2020,122:106801
|
CSCD被引
4
次
|
|
|
|
20.
Zhang Y. Compositional design of soft magnetic high entropy alloys by minimizing magnetostriction coefficient in (Fe_(0.3) Co_(0.5) Ni_(0.2))_(100-x) (Al_(1/3) Si_(2/3))_x system.
Metals,2019,9(3):382
|
CSCD被引
7
次
|
|
|
|
|