帮助 关于我们

返回检索结果

微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响
Effect of microscale W elements on microstructure and properties of CoCrFeNiMnAl high entropy alloys

查看参考文献30篇

张昊 1 *   吴昊 2   唐啸天 2   罗涛 2   邓人钦 2  
文摘 高熵合金(HEAs)表现出比传统合金更为优异的耐磨耐蚀性能,逐渐成为金属材料领域的研究热点。采用金属热还原法制备不同W含量的CoCrFeNiMnAlW_x (x=0.12,0.15,0.19)高熵合金,研究微量W元素的添加对CoCrFeNiMnAlW_x高熵合金的相结构、微观组织与性能的影响。采用XRD,SEM和EDS等技术表征该合金的相结构、显微组织及元素分布,利用材料表面性能测试仪和电化学工作站测定该合金的摩擦磨损性能和电化学腐蚀性能。结果表明:不同W含量高熵合金均由两种不同晶格常数的BCC相组成,随着W含量的增加,BCC1相微观相貌并没有明显的变化,但是BCC2相的微观形貌和元素分布随W含量的变化而明显变化,而耐磨损性能和耐腐蚀性能均有一定程度的提高,CoCrFeNiMnAlW_(0.19)合金的摩擦因数和磨损率分别为0.684和1.06×10~(-5) mm~3/(N·m),磨损机制由黏着磨损转变为黏着磨损和磨粒磨损相结合,最后再转变为摩擦磨损;在3.5%NaCl溶液中的腐蚀电流密度从6.08×10~(-6) A/cm~2减小到1.72×10~(-6) A/cm~2,腐蚀速率也逐渐减小。
其他语种文摘 High entropy alloys (HEAs)show better wear resistance and corrosion resistance than traditional alloys,which has gradually become a research hotspot in the field of metal materials. CoCrFeNiMnAlW_x(x=0.12,0.15,0.19)high entropy alloys with different W content were prepared by metal thermal reduction.The effects of W addition on phase structure,microstructure and performance of CoCrFeNiMnAlW_x high entropy alloy were investigated.The phase structure, microstructure and element distribution of the alloy were characterized by XRD,SEM and EDS. Surface performance tester and electrochemical workstation were adopted to detect corrosion resistance and wear resistance performance of CoCrFeNiMnAlW_xhigh entropy alloy.Results show that the high entropy alloys with different W contents are both composed of BCC phases with two different lattice contents.There is no obvious change in the micro-tissue of the dendrites with the increase content of W.However,microstructure between dendrites changes significantly with the change of W content. The wear resistance and corrosion resistance have certain degree of improvement,the friction coefficient and wear rate of CoCrFeNiMnAlW_(0.19) alloy are 0.684and 1.06×10~(-5) mm~3/(N·m) respectively.The wear mechanism is converted from adhesive wear to the combination of adhesion wear and abrasive particle wear,and finally is transformed to friction wear.The wear resistance performance of CoCrFeNiMnAlW_x high entropy alloy in 3.5% NaCl solution is increased with the increase of W content.Corrosion current density is decreased from 6.08×10~(-6) A/cm~2 to 1.72×10~(-6) A/cm~2,and the corrosion rate is gradually reduced.
来源 材料工程 ,2022,50(3):50-59 【核心库】
DOI 10.11868/j.issn.1001-4381.2021.000748
关键词 高熵合金 ; 铝热反应 ; 相结构 ; 耐腐蚀性能 ; 耐磨损性能
地址

1. 长沙学院机电工程学院, 长沙, 410022  

2. 湖南大学材料科学与工程学院, 长沙, 410082

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 一般工业技术
基金 国家自然科学基金项目
文献收藏号 CSCD:7181247

参考文献 共 30 共2页

1.  彭鹏. 超细晶镁合金的研究现状及展望. 材料导报,2019,33(9):1526-1534 CSCD被引 7    
2.  Yeh J W. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials,2004,6(5):299-303 CSCD被引 1138    
3.  Mu Y. Frictional wear and corrosion behavior of AlCoCrFeNi high-entropy alloy coatings synthesized by atmospheric plasma spraying. Entropy,2020,22(7):740 CSCD被引 4    
4.  Abbasi E. Treatment of CoCrFeMnNi (NbC)high-entropy alloys. Journal of Materials Engineering and Performance,2019,28(11):6779-6788 CSCD被引 2    
5.  Liao W B. High strength and deformation mechanisms of Al_(0.3) CoCrFeNi high-entropy alloy thin films fabricated by magnetron sputtering. Entropy,2019,21(2):146 CSCD被引 5    
6.  Mu K. Nano oxides reinforced high-entropy alloy coatings synthesized by atmospheric plasma spraying. Materials Research Letters,2019,7(8):312-319 CSCD被引 1    
7.  Listyawan T A. Microstructure and mechanical properties of CoCrFeMnNi high entropy alloy with ultrasonic nanocrystal surface modification process. Journal of Materials Science & Technology,2020,57:123-130 CSCD被引 8    
8.  Wang Z. Wettability, electron work function and corrosion behavior of CoCrFeMnNi high entropy alloy films. Surface & Coatings Technology,2020,400:126222 CSCD被引 3    
9.  Raza A. Corrosion resistance of weight reduced Al_xCrFeMoV high entropy alloys. Applied Surface Science,2019,485:368-374 CSCD被引 10    
10.  Chen Y Y. Microstructure and electrochemical properties of high entropy alloys-a comparison with type-304 stainless steel. Corrosion Science,2005,47:2257-2279 CSCD被引 45    
11.  Zheng S J. A feasible method for the fabrication of VAlTiCrSi amorphous high entropy alloy film with outstanding anti-corrosion property. Applied Surface Science,2019,483:870-874 CSCD被引 7    
12.  Liu P. Surface modification of CrFe CoNiMo high entropy alloy induced by high-current pulsed electron beam. Applied Surface Science,2020,504:144453 CSCD被引 1    
13.  Shi Y Z. In-situ electrochemicalAFM study of localized corrosion of Al_xCoCrFeNi high-entropy alloys in chloride solution. Applied Surface Science,2018,439:533-544 CSCD被引 9    
14.  Niu Z Z. Microstructural evolution, mechanical and corrosion behaviors of as-annealed CoCrFeNiMo_x(x=0, 0.2, 0.5, 0.8, 1) high entropy alloys. Journal of Alloys and Compounds,2020,820:153273 CSCD被引 3    
15.  Niu Z. Microstructure, mechanical properties and corrosion resistance of CoCrFeNiW_x(x=0, 0.2, 0.5)high entropy alloys. Intermetallics,2019,112:106550 CSCD被引 4    
16.  Li T X. Tungsten-containing high-entropy alloys: a focused review of manufacturing routes, phase selection, mechanical properties, and irradiation resistance properties. Tungsten,2021,3(2):181-196 CSCD被引 9    
17.  李天昕. 难熔高熵合金在反应堆结构材料领域的机遇与挑战. 金属学报,2021,57(1):42-54 CSCD被引 11    
18.  Kumar D. Understanding the effect of tungsten on corrosion behavior of AlCuCrFeMnW, high-entropy alloys in 3.5 wt. % NaCl solution. Journal of Materials Engineering and Performance,2018,27(9):4481-4488 CSCD被引 3    
19.  Zhou R. Microstructures and wear behaviour of (FeCoCrNi)_(1-x)(WC)_x high entropy alloy composites. International Journal of Refractory Metals and Hard Materials,2018,75:56-62 CSCD被引 13    
20.  戴玮. 钛铁合金制备研究现状. 有色金属(冶炼部分),2019,5:54-59 CSCD被引 1    
引证文献 7

1 马明星 添加Ti对AlCuFeMnNi高熵合金组织和耐磨性的影响 金属热处理,2023,48(3):254-258
CSCD被引 1

2 张聪 高通量计算与机器学习驱动高熵合金的研究进展 材料工程,2023,51(3):1-16
CSCD被引 7

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号