微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响
Effect of microscale W elements on microstructure and properties of CoCrFeNiMnAl high entropy alloys
查看参考文献30篇
文摘
|
高熵合金(HEAs)表现出比传统合金更为优异的耐磨耐蚀性能,逐渐成为金属材料领域的研究热点。采用金属热还原法制备不同W含量的CoCrFeNiMnAlW_x (x=0.12,0.15,0.19)高熵合金,研究微量W元素的添加对CoCrFeNiMnAlW_x高熵合金的相结构、微观组织与性能的影响。采用XRD,SEM和EDS等技术表征该合金的相结构、显微组织及元素分布,利用材料表面性能测试仪和电化学工作站测定该合金的摩擦磨损性能和电化学腐蚀性能。结果表明:不同W含量高熵合金均由两种不同晶格常数的BCC相组成,随着W含量的增加,BCC1相微观相貌并没有明显的变化,但是BCC2相的微观形貌和元素分布随W含量的变化而明显变化,而耐磨损性能和耐腐蚀性能均有一定程度的提高,CoCrFeNiMnAlW_(0.19)合金的摩擦因数和磨损率分别为0.684和1.06×10~(-5) mm~3/(N·m),磨损机制由黏着磨损转变为黏着磨损和磨粒磨损相结合,最后再转变为摩擦磨损;在3.5%NaCl溶液中的腐蚀电流密度从6.08×10~(-6) A/cm~2减小到1.72×10~(-6) A/cm~2,腐蚀速率也逐渐减小。 |
其他语种文摘
|
High entropy alloys (HEAs)show better wear resistance and corrosion resistance than traditional alloys,which has gradually become a research hotspot in the field of metal materials. CoCrFeNiMnAlW_x(x=0.12,0.15,0.19)high entropy alloys with different W content were prepared by metal thermal reduction.The effects of W addition on phase structure,microstructure and performance of CoCrFeNiMnAlW_x high entropy alloy were investigated.The phase structure, microstructure and element distribution of the alloy were characterized by XRD,SEM and EDS. Surface performance tester and electrochemical workstation were adopted to detect corrosion resistance and wear resistance performance of CoCrFeNiMnAlW_xhigh entropy alloy.Results show that the high entropy alloys with different W contents are both composed of BCC phases with two different lattice contents.There is no obvious change in the micro-tissue of the dendrites with the increase content of W.However,microstructure between dendrites changes significantly with the change of W content. The wear resistance and corrosion resistance have certain degree of improvement,the friction coefficient and wear rate of CoCrFeNiMnAlW_(0.19) alloy are 0.684and 1.06×10~(-5) mm~3/(N·m) respectively.The wear mechanism is converted from adhesive wear to the combination of adhesion wear and abrasive particle wear,and finally is transformed to friction wear.The wear resistance performance of CoCrFeNiMnAlW_x high entropy alloy in 3.5% NaCl solution is increased with the increase of W content.Corrosion current density is decreased from 6.08×10~(-6) A/cm~2 to 1.72×10~(-6) A/cm~2,and the corrosion rate is gradually reduced. |
来源
|
材料工程
,2022,50(3):50-59 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000748
|
关键词
|
高熵合金
;
铝热反应
;
相结构
;
耐腐蚀性能
;
耐磨损性能
|
地址
|
1.
长沙学院机电工程学院, 长沙, 410022
2.
湖南大学材料科学与工程学院, 长沙, 410082
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7181247
|
参考文献 共
30
共2页
|
1.
彭鹏. 超细晶镁合金的研究现状及展望.
材料导报,2019,33(9):1526-1534
|
CSCD被引
7
次
|
|
|
|
2.
Yeh J W. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes.
Advanced Engineering Materials,2004,6(5):299-303
|
CSCD被引
1138
次
|
|
|
|
3.
Mu Y. Frictional wear and corrosion behavior of AlCoCrFeNi high-entropy alloy coatings synthesized by atmospheric plasma spraying.
Entropy,2020,22(7):740
|
CSCD被引
4
次
|
|
|
|
4.
Abbasi E. Treatment of CoCrFeMnNi (NbC)high-entropy alloys.
Journal of Materials Engineering and Performance,2019,28(11):6779-6788
|
CSCD被引
2
次
|
|
|
|
5.
Liao W B. High strength and deformation mechanisms of Al_(0.3) CoCrFeNi high-entropy alloy thin films fabricated by magnetron sputtering.
Entropy,2019,21(2):146
|
CSCD被引
5
次
|
|
|
|
6.
Mu K. Nano oxides reinforced high-entropy alloy coatings synthesized by atmospheric plasma spraying.
Materials Research Letters,2019,7(8):312-319
|
CSCD被引
1
次
|
|
|
|
7.
Listyawan T A. Microstructure and mechanical properties of CoCrFeMnNi high entropy alloy with ultrasonic nanocrystal surface modification process.
Journal of Materials Science & Technology,2020,57:123-130
|
CSCD被引
8
次
|
|
|
|
8.
Wang Z. Wettability, electron work function and corrosion behavior of CoCrFeMnNi high entropy alloy films.
Surface & Coatings Technology,2020,400:126222
|
CSCD被引
3
次
|
|
|
|
9.
Raza A. Corrosion resistance of weight reduced Al_xCrFeMoV high entropy alloys.
Applied Surface Science,2019,485:368-374
|
CSCD被引
10
次
|
|
|
|
10.
Chen Y Y. Microstructure and electrochemical properties of high entropy alloys-a comparison with type-304 stainless steel.
Corrosion Science,2005,47:2257-2279
|
CSCD被引
45
次
|
|
|
|
11.
Zheng S J. A feasible method for the fabrication of VAlTiCrSi amorphous high entropy alloy film with outstanding anti-corrosion property.
Applied Surface Science,2019,483:870-874
|
CSCD被引
7
次
|
|
|
|
12.
Liu P. Surface modification of CrFe CoNiMo high entropy alloy induced by high-current pulsed electron beam.
Applied Surface Science,2020,504:144453
|
CSCD被引
1
次
|
|
|
|
13.
Shi Y Z. In-situ electrochemicalAFM study of localized corrosion of Al_xCoCrFeNi high-entropy alloys in chloride solution.
Applied Surface Science,2018,439:533-544
|
CSCD被引
9
次
|
|
|
|
14.
Niu Z Z. Microstructural evolution, mechanical and corrosion behaviors of as-annealed CoCrFeNiMo_x(x=0, 0.2, 0.5, 0.8, 1) high entropy alloys.
Journal of Alloys and Compounds,2020,820:153273
|
CSCD被引
3
次
|
|
|
|
15.
Niu Z. Microstructure, mechanical properties and corrosion resistance of CoCrFeNiW_x(x=0, 0.2, 0.5)high entropy alloys.
Intermetallics,2019,112:106550
|
CSCD被引
4
次
|
|
|
|
16.
Li T X. Tungsten-containing high-entropy alloys: a focused review of manufacturing routes, phase selection, mechanical properties, and irradiation resistance properties.
Tungsten,2021,3(2):181-196
|
CSCD被引
9
次
|
|
|
|
17.
李天昕. 难熔高熵合金在反应堆结构材料领域的机遇与挑战.
金属学报,2021,57(1):42-54
|
CSCD被引
11
次
|
|
|
|
18.
Kumar D. Understanding the effect of tungsten on corrosion behavior of AlCuCrFeMnW, high-entropy alloys in 3.5 wt. % NaCl solution.
Journal of Materials Engineering and Performance,2018,27(9):4481-4488
|
CSCD被引
3
次
|
|
|
|
19.
Zhou R. Microstructures and wear behaviour of (FeCoCrNi)_(1-x)(WC)_x high entropy alloy composites.
International Journal of Refractory Metals and Hard Materials,2018,75:56-62
|
CSCD被引
13
次
|
|
|
|
20.
戴玮. 钛铁合金制备研究现状.
有色金属(冶炼部分),2019,5:54-59
|
CSCD被引
1
次
|
|
|
|
|