高熵合金摩擦磨损性能的研究进展
Research progress in tribological properties of high entropy alloys
查看参考文献121篇
文摘
|
近年来,高熵合金成为金属材料领域的研究热点。高熵合金处于相图中心区域,具有广阔的合金成分空间和组织结构形成可能;成分和制备工艺的协同调控,能够获得更丰富的组织结构;非常规的化学结构有望突破传统抗磨、润滑合金的性能极限。本文讨论了耐磨高熵合金的分类,分析了化学活泼金属、软金属、难熔金属的添加对高熵合金抗磨、润滑性能的影响规律;总结了非金属元素和陶瓷相的添加对高熵合金基复合材料摩擦磨损性能的影响;综述了热处理和表面工程技术对高熵合金表面组织结构和摩擦磨损行为的作用;讨论了苛刻工况下抗磨润滑高熵合金的设计方法。对未来高熵合金在摩擦磨损领域的研究和应用进行了展望,高熵合金在解决传统合金的瓶颈问题上具有巨大潜力,如在极端工况下实现稳定润滑抗磨、保证特定功能作用下实现抗磨。 |
其他语种文摘
|
In recent years,the sudden rise of high entropy alloys(HEAs)has become a hot research topic in the field of metal materials.The high entropy alloy is located in the central region of phase diagram,which has broad alloy composition space and possible formation of microstructure.The synergistic regulation of composition and preparation process can obtain richer structure. Unconventional chemical structure is expected to break through the performance limit of traditional anti-wear and lubricating alloys.In this work,the classification of wear-resistant HEAs was discussed.The effects of the addition of chemically active metals,soft metals and refractory metals on the wear resistance and lubrication properties of HEAs were analyzed.The effects of non-metallic elements and ceramic phases on the tribological properties of HEAs matrix composites were summarized.The effects of heat treatment and surface engineering technology on the surface microstructure and tribological behavior of HEAs were reviewed.The design method of HEAs with anti-wear lubrication under severe working conditions was discussed.The future research and application of HEAs in the field of friction and wear were prospected.High entropy alloys have great potential to solve the bottleneck problems of traditional alloys,such as to realize stable lubrication and anti-wear under extreme working conditions and to ensure anti-wear under specific functions. |
来源
|
材料工程
,2022,50(3):1-17 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000823
|
关键词
|
高熵合金
;
抗磨
;
润滑
;
应用前景
|
地址
|
1.
中国科学院兰州化学物理研究所, 固体润滑国家重点实验室, 兰州, 730000
2.
烟台先进材料与绿色制造山东省实验室, 烟台先进材料与绿色制造山东省实验室, 山东, 烟台, 264006
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金青年科学基金
;
中国科学院青年创新促进会项目
;
甘肃省青年科技基金计划
;
山东省基础研究重大项目
;
兰州化物所青年科技工作者合作基金
|
文献收藏号
|
CSCD:7181243
|
参考文献 共
121
共7页
|
1.
Savage N. Striking a balance with high-entropy alloys.
Nature,2021,595(7865):4-5
|
CSCD被引
1
次
|
|
|
|
2.
Yang Y. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy.
Nature,2021,595(7866):245-249
|
CSCD被引
28
次
|
|
|
|
3.
Shi P J. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys.
Science,2021,373(6557):912-918
|
CSCD被引
52
次
|
|
|
|
4.
Bu Y Q. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys.
Materials Today,2021,46:28-34
|
CSCD被引
29
次
|
|
|
|
5.
Yan X H. Functional properties and promising applications of high entropy alloys.
Scripta Materialia,2020,187:188-193
|
CSCD被引
15
次
|
|
|
|
6.
Hu R. Application of atom probe tomography in understanding high entropy alloys: 3D local chemical compositions in atomic scale analysis.
Progress in Materials Science,2021,117:100740
|
CSCD被引
2
次
|
|
|
|
7.
Li Z Z. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys.
Progress in Materials Science,2019,102:296-345
|
CSCD被引
95
次
|
|
|
|
8.
Li W D. Mechanical behavior of high-entropy alloys.
Progress in Materials Science,2021,118:100777
|
CSCD被引
70
次
|
|
|
|
9.
Nagarjuna C. Worn surface and subsurface layer structure formation behavior on wear mechanism of CoCrFeMnNi high entropy alloy in different sliding conditions.
Applied Surface Science,2021,549:149202
|
CSCD被引
6
次
|
|
|
|
10.
Yadav S. Wear behavior of high entropy alloys containing soft dispersoids (Pb, Bi).
Materials Chemistry and Physics,2018,210:222-232
|
CSCD被引
8
次
|
|
|
|
11.
Yang Y C. Microstructure and properties of FeCoCrNiMoSi_x high-entropy alloys fabricated by spark plasma sintering.
Journal of Alloys and Compounds,2021,884:161070
|
CSCD被引
2
次
|
|
|
|
12.
Yang S F. Microstructure and properties of Al_(0.4) FeCrNiCo_(1.5) Ti_(0.3) high entropy alloy prepared by MA-HP technique.
Rare Metal Materials and Engineering,2014,43(12):2948-2952
|
CSCD被引
2
次
|
|
|
|
13.
Yang D N. Effect of fabrication methods on microstructures, mechanical properties and strengthening mechanisms of Fe_(0.25)CrNiAl medium-entropy alloy.
Journal of Alloys and Compounds,2021,888:161526
|
CSCD被引
3
次
|
|
|
|
14.
Litwa P. The additive manufacture processing and machinability of CrMnFeCoNi high entropy alloy.
Materials & Design,2021,198:109380
|
CSCD被引
4
次
|
|
|
|
15.
Peng H P. Additive manufacturing of Al_(0.3)CoCrFeNi high-entropy alloy by powder feeding laser melting deposition.
Journal of Alloys and Compounds,2021,862:158286
|
CSCD被引
5
次
|
|
|
|
16.
Gu Z. Microstructure and wear behavior of mechanically alloyed powder Al_xMo_(0.5) NbFeTiMn_2 high entropy alloy coating formed by laser cladding.
Surface and Coatings Technology,2020,401:126244
|
CSCD被引
6
次
|
|
|
|
17.
Cui Y. Wear resistance of FeCoCrNiMnAl_x high-entropy alloy coatings at high temperature.
Applied Surface Science,2020,512:145736
|
CSCD被引
14
次
|
|
|
|
18.
Menghani J. Wear, erosion and corrosion behavior of laser cladded high entropy alloy coatings-a review.
Materials Today: Proceedings,2021,38:2824-2829
|
CSCD被引
4
次
|
|
|
|
19.
Wang J Y. Study of high temperature friction and wear performance of (CoCrFeMnNi)_(85) Ti_(15) high-entropy alloy coating prepared by plasma cladding.
Surface and Coatings Technology,2020,384:125337
|
CSCD被引
15
次
|
|
|
|
20.
Xiao J K. Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying.
Surface and Coatings Technology,2020,385:125430
|
CSCD被引
19
次
|
|
|
|
|