吸气式电推进中的气体捕集系统的设计分析
Design and Analysis of an Air-Intake System for Air-Breathing Electric Propulsion
查看参考文献20篇
文摘
|
针对吸气式电推进系统中的气体捕集系统,提出了一种能够准确计算气体捕集率的理论模型,并以此为基础开展了气体捕集系统的优化设计。首先,通过分析几类代表性气体捕集系统的捕集特点,提取了影响气体捕集率的关键参数。然后,通过分析进气道内气体分子的微观行为,推导得到了气体捕集率的理论公式,获得了无量纲管长、末端净透射率等关键参数对气体捕集率的影响规律。最后,利用理论模型,对实际飞行条件下的气体捕集系统开展了优化设计。结果表明,当末端净透射率给定时气体捕集率随无量纲管长先增后减,且最大捕集率与末端净透射率正相关。通过使用涡轮分子泵提升末端净透射率并对无量纲管长进行优化,实际飞行条件下的气体捕集率可以达到50%以上。 |
其他语种文摘
|
Air-breathing electric propulsion is a very promising propulsion technology for ultra-low-orbit satellite, and one of the keys is to efficiently collect atmospheric molecules as propellant. Several representative air-intake systems are compared and analyzed, which helps to summarize the basic principles to increase collection efficiency. The common physical problems in air-intake systems are then investigated through theoretical analysis and numerical simulation, and the influence of key parameters such as non-dimensional tube length and exit transmission probability on collection efficiency is obtained. It is found that when the non-dimensional tube length increases the collection efficiency first increases and then decreases, and the highest collection efficiency shows a positive correlation with the exit transmission probability. Based on the analysis,a preliminary design of air-intake system is provided for earth orbit at 150 km and the optimized collection efficiency is over 50%. |
来源
|
宇航学报
,2022,43(2):232-240 【核心库】
|
DOI
|
10.3873/j.issn.1000-1328.2022.02.012
|
关键词
|
吸气式电推进
;
气体捕集
;
自由分子流
;
涡轮分子泵
|
地址
|
1.
中国科学院力学研究所空天飞行科技中心, 北京, 100190
2.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
3.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1328 |
学科
|
力学 |
基金
|
海南省重大科技项目
;
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:7180169
|
参考文献 共
20
共1页
|
1.
Nishiyama K. Air breathing ion engine concept.
The 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law,2003
|
CSCD被引
1
次
|
|
|
|
2.
Cara D D. RAM electric propulsion forlow earth orbit operation: An ESA study.
The 30th International Electric Propulsion Conference,2007
|
CSCD被引
1
次
|
|
|
|
3.
Barral S. Conceptual design of an air-breathing electric propulsion system.
The 34th International Electric Propulsion Conference,2015
|
CSCD被引
1
次
|
|
|
|
4.
Romano F. Air-intake design investigation for an air-breathing electric propulsion system.
The 34th International Electric Propulsion Conference,2015
|
CSCD被引
1
次
|
|
|
|
5.
Singh L A. A review of research in low earth orbit propellant collection.
Progress in Aerospace Sciences,2015,75:15-25
|
CSCD被引
4
次
|
|
|
|
6.
Jackson S W. Conceptual design of an air-breathing electric thruster for CubeSat applications.
Journal of Spacecraft and Rockets,2018,55(3):632-639
|
CSCD被引
12
次
|
|
|
|
7.
Moe K. Gas-surface interactions and satellite drag coefficients.
Planetary & Space Science,2005,53(8):793-801
|
CSCD被引
15
次
|
|
|
|
8.
Binder T. Transmission probabilities of rarefied flows in the application of atmosphere-breathing electric propulsion.
The 30th International Symposium on Rarefied Gas Dynamics,2016
|
CSCD被引
1
次
|
|
|
|
9.
Fujita K. Air-intake performance estimation of air-breathing ion engines.
Transactions of the Japan Society of Mechanical Engineers, Part B,2004,70(700):3038-3044
|
CSCD被引
2
次
|
|
|
|
10.
Tagawa M. Experimental study of air breathing ion engine using laser detonation beam source.
Journal of Propulsion and Power,2013,29(3):501-506
|
CSCD被引
11
次
|
|
|
|
11.
Andreussi T. Development and experimental validation of a Hall effect thruster RAM-EP concept.
The 35th International Electric Propulsion Conference,2017
|
CSCD被引
1
次
|
|
|
|
12.
Li Y. Design and analysis of vacuum air-intake device used in air-breathing electric propulsion.
Vacuum,2015,120:89-95
|
CSCD被引
7
次
|
|
|
|
13.
Clausing P. Uber die stromung sehr verdunnter gase durch rohren von beliebiger lange.
Annalen der Physik,1932,404(8):961-989
|
CSCD被引
1
次
|
|
|
|
14.
Hughes P C. Theory for the free molecular impact probe at an angle of attack.
Rarefied Gas Dynamics,1965,1:653
|
CSCD被引
1
次
|
|
|
|
15.
Cole R J. Complementary variational principles for Knudsen flow rates.
IMA Journal of Applied Mathematics,1977,20(1):107-115
|
CSCD被引
2
次
|
|
|
|
16.
Bird G A.
Molecular gas dynamics and the direct simulation of gas flows,1994
|
CSCD被引
213
次
|
|
|
|
17.
Li Y W. Numerical investigation of three turbomolecular pump models in the free molecular flow range.
Vacuum,2014,101:337-344
|
CSCD被引
2
次
|
|
|
|
18.
沈青.
稀薄气体动力学,2003:124-125
|
CSCD被引
1
次
|
|
|
|
19.
Li Y. Molecular flow transmission probabilities of any regular polygon tubes.
Vacuum,2013,92:81-84
|
CSCD被引
1
次
|
|
|
|
20.
Picone J M. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues.
Journal of Geophysical Research: Space Physics,2002,107(A12):SIA15-1-SIA15-16
|
CSCD被引
146
次
|
|
|
|
|