基于脉冲串模式的ZnO薄膜皮秒激光脉冲沉积技术
Picosecond Pulsed Laser Deposition Technique to Fabricate Zinc-Oxide Thin Films Through Burst Mode
查看参考文献54篇
吴恩利
1,2
代守军
1,2,3
轩新想
4
何建国
1,2,3
刘洋
1,2,3
谭羽
5
貊泽强
1,2,3
余锦
1,2
*
文摘
|
介绍了一种基于多脉冲模式的皮秒激光脉冲沉积方法,采用该方法在玻璃基底和单晶硅基底上沉积了透明导电氧化锌(ZnO)薄膜,使用光谱椭偏仪、原子力显微镜、扫描电子显微镜、X射线衍射仪、分光光度计和四探针测试仪分析了激光的不同脉冲串模式对ZnO薄膜厚度、粗糙度、表面形貌、晶体结构、光学性能以及电学性能的影响。结果表明:沉积速率随着子脉冲串数量的增加而减小;随着子脉冲串数量的增加,薄膜表面粗糙度减小,颗粒尺寸减小,薄膜变得更加致密光滑;所有样品均呈现多晶结构;ZnO薄膜的透过率在可见光区域内高于92.95%,且禁带宽度在3.317~3.427eV范围内;薄膜电阻率随着子脉冲数量的增加而减小。相比于单脉冲,利用多脉冲沉积产生的薄膜具有更高的表面质量、更好的光学性能和更低的电阻率。 |
其他语种文摘
|
Objective Pulsed laser deposition(PLD)is a technique,for removing material from the surface of a target that uses laser energy pulses.It has several advantages over other depositions methods,including high particle energy to form film,fast deposition rate,and no restriction on the target materials.PLD technology has advanced rapidly in recent years,and it is now widely used in the production of metals,ceramics,transparent electrodes,and high-temperature superconducting films.For traditional PLD technology,nanosecond single-pulse lasers are commonly used as excitation sources.One disadvantage of using nanosecond pulsed laser is the possibility of selective ablation,which could result in a lack of stoichiometry during the process.This is a critical challenge that nanosecond PLD(ns-PLD)technologies for scientific research and industrial applications.With the increasing availability of commercial ultrashort laser sources,in recent years,and its distinct advantage of efficient laser ablation,the ultrashort pulse PLD is gaining popularity as a method for producing thin films.Ultrashort pulse PLD demonstrates its potential capacity to control the emission of droplets due to the diverse ablation mechanisms,even though it may not be the ultimate solution in smooth film deposition.Furthermore,the pulse sequence presented in this article has the potential to change the laser-matter interaction,which can be used to improve the deposit's surface quality and optical properties. Methods A method for pulsed deposition of picosecond laser based on different pulse burst modes is presented, consisting of four main components:seed oscillator,pulse selector,laser amplifier,and power controller(Fig.1). The laser burst mode is set from 1to 4(Fig.2)with a 532nm output wavelength,100kHz laser frequency,33.3ns intrapulse interval,and 10μs interpulse string interval.Zinc oxide(ZnO)transparent conductive thin films are deposited on glass substrates and single-crystal silicon substrates via the proposed method.The effect of different pulse burst modes on the crystal structure,surface morphology,and optical properties of the ZnO film is studied thoroughly using spectroscopic ellipsometry, atomic force microscopy, X-ray diffractometry, ultraviolet-visible spectrophotometry,and scanning electron microscopy. Results and Discussions We obtain film thickness(Fig.3),refractive index,and extinction coefficient data(Table 1)created for various burst modes(from 1to 4)and discover that the deposition rate decreases and are accompanied by an increase in refractive index as the number of burst modes increases.To begin,the intrapulse period in multipulse mode is set to 33.3ns and the average plasma velocity is around 104 cm/s.Therefore,using a burst mode of 4,the plasma in the multipulse mode is not completely disengaged from the target when the last pulse is incident, resulting in laser-plasma contact and partial absorption of the pulsed laser energy by the plasma,and limiting target material extraction.Furthermore,the energy distribution of laser pulses is related to the fact that the first pulse energy gradually decreases as the multipulse burst mode increases in size,reducing the first energy interaction between the laser and the target.The roughness diminishes as the multipulse burst mode is increased(Fig.4).As the laser-plasma interaction is strengthen,the plasma's kinetic energy increases,resulting in longer plasma lifetimes,longer diffusion durations on the substrate,and eventually favoring the orderly formation of thin films.In the single-pulse mode of laser deposition,large particles and droplets are present;however,the laser-plasma interaction in the multipulse mode can further heat up and break down the large particles in the plasma,resulting in fewer large particles on the film surface and smoother,denser films(Figs.5and 6). |
来源
|
中国激光
,2022,49(6):0603003 【核心库】
|
DOI
|
10.3788/CJL202249.0603003
|
关键词
|
薄膜
;
脉冲激光沉积法
;
脉冲串模式
;
皮秒脉冲激光
;
氧化锌薄膜
|
地址
|
1.
中国科学院空天信息创新研究院, 北京, 100094
2.
中国科学院大学, 北京, 100049
3.
中国科学院计算光学成像技术重点实验室, 中国科学院计算光学成像技术重点实验室, 北京, 100094
4.
中国电子科技集团公司第三研究所, 北京, 100015
5.
中国科学院西安光学精密机械研究所, 陕西, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-7025 |
学科
|
物理学 |
基金
|
国家重点研发
;
高端跨尺度多功能激光精密去除制造装备
;
中国科学院科研仪器设备研制项目
|
文献收藏号
|
CSCD:7179465
|
参考文献 共
54
共3页
|
1.
邓钟炀. 脉冲激光沉积高性能薄膜制备及其应用研究进展.
中国激光,2021,48(8):0802010
|
CSCD被引
8
次
|
|
|
|
2.
Sharma A K. Phase transformation in room temperature pulsed laser deposited TiO_2 thin films.
Applied Surface Science,2003,206(1/2/3/4):137-148
|
CSCD被引
2
次
|
|
|
|
3.
Craciun V. Effects of laser wavelength and fluence on the growth of ZnO thin films by pulsed laser deposition.
Applied Surface Science,1995,86(1/2/3/4):99-106
|
CSCD被引
3
次
|
|
|
|
4.
Ebihara K. Co-doping deposition of p-type ZnO thin films using KrF excimer laser ablation.
MRS Online Proceedings Library,2003,747(1):1-6
|
CSCD被引
1
次
|
|
|
|
5.
Franklin J B. Optimised pulsed laser deposition of ZnO thin films on transparent conducting substrates.
Journal of Materials Chemistry,2011,21(22):8178-8182
|
CSCD被引
2
次
|
|
|
|
6.
Golalikhani M. Stoichiometry of LaAlO_3 films grown on SrTiO_3 by pulsed laser deposition.
Journal of Applied Physics,2013,114(2):027008
|
CSCD被引
1
次
|
|
|
|
7.
Garrelie F. Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping.
Optics & Laser Technology,2016,78:42-51
|
CSCD被引
2
次
|
|
|
|
8.
Kudryashov S I. Dynamic all-optical control in ultrashort doublepulse laser ablation.
Applied Surface Science,2021,537:147940
|
CSCD被引
2
次
|
|
|
|
9.
杨慧敏. 双光束复合脉冲激光辐照沉积纳米金刚石薄膜.
中国激光,2014,41(5):0507001
|
CSCD被引
2
次
|
|
|
|
10.
Bourquard F. Control of the graphite femtosecond ablation plume kinetics by temporal laser pulse shaping:effects on pulsed laser deposition of diamond-like carbon.
The Journal of Physical Chemistry C,2014,118(8):4377-4385
|
CSCD被引
2
次
|
|
|
|
11.
Ristoscu C. Femtosecond pulse shaping for phase and morphology control in PLD:synthesis of cubic SiC.
Applied Surface Science,2006,252(13):4857-4862
|
CSCD被引
2
次
|
|
|
|
12.
Guillermin M. Tuning spectral properties of ultrafast laser ablation plasmas from brass using adaptive temporal pulse shaping.
Optics Express,2010,18(11):11159-11172
|
CSCD被引
1
次
|
|
|
|
13.
Piepmeier E H. Q-switched laser energy absorption in the plume of an aluminum alloy.
Analytical Chemistry,1969,41(6):700-707
|
CSCD被引
9
次
|
|
|
|
14.
Scott R H. Time-resolved directreading spectrochemical analysis using a laser source with medium pulse-repetition rate.
Spectrochimica Acta Part B:Atomic Spectroscopy,1971,26(11):707-719
|
CSCD被引
1
次
|
|
|
|
15.
Galbacs G. A study of ablation,spatial,and temporal characteristics of laser-induced plasmas generated by multiple collinear pulses.
Applied Spectroscopy,2010,64(2):161-172
|
CSCD被引
2
次
|
|
|
|
16.
Hartmann C. Investigation on laser micro ablation of metals using ns-multi-pulses.
Journal of Physics:Conference Series. 59,2007:440-444
|
CSCD被引
1
次
|
|
|
|
17.
Jedlinszki N. An evaluation of the analytical performance of collinear multi-pulse laser induced breakdown spectroscopy.
Microchemical Journal,2011,97(2):255-263
|
CSCD被引
6
次
|
|
|
|
18.
Penaloza-Mendoza Y. Comparison on morphological and optical properties of TiO_2thin films grown by single-pulse and multi-pulse laser ablation.
Journal of Surface Engineered Materials and Advanced Technology,2015,5(1):17-23
|
CSCD被引
2
次
|
|
|
|
19.
Kekkonen V. Picosecond pulsed laser deposition of metal-oxide sensing layers with controllable porosity for gas sensor applications.
Applied Physics A,2016,122(3):1-7
|
CSCD被引
2
次
|
|
|
|
20.
代守军. 脉冲激光沉积微粒控制技术的研究进展.
激光与光电子学进展,2021,58(1):0100004
|
CSCD被引
3
次
|
|
|
|
|