骨肉瘤关键基因及免疫浸润的生物信息分析
Bioinformatics Analysis on Key Genes and Immune Infiltration of Osteosarcoma
查看参考文献32篇
文摘
|
目的通过生物信息学方法筛选骨肉瘤潜在的关键基因,并分析其免疫浸润模式。方法从基因表达综合数据库(GEO)获取与骨肉瘤相关的基因表达谱GSE16088和GSE12865,采用生物信息学方法筛选与骨肉瘤相关的差异表达基因(DEGs),并进行基因本体(GO)功能注释和京都基因与基因组百科全书(KEGG)富集分析、免疫细胞浸润分析。通过蛋白质-蛋白质相互作用网络筛选出骨肉瘤潜在的关键基因,利用癌症基因组图谱数据库(TCGA)验证关键基因在骨肉瘤和正常组织样本中的表达情况。结果共筛选出108个DEGs。GO功能注释和KEGG富集分析显示,DEGs主要富集在整合素结合、细胞外基质(ECM)结构成分、ECM受体相互作用和磷脂酰肌醇3-激酶/蛋白激酶B(PI3K/Akt)信号通路。巨噬细胞是骨肉瘤最主要的免疫浸润细胞。分泌型磷蛋白1(SPP1)、基质金属肽酶2(MMP2)、赖氨酰氧化酶(LOX)、V型胶原蛋白α(II)链(COL5A2)、黑色素瘤细胞黏附分子(MCAM)5个关键基因在骨肉瘤和正常组织样本中的表达存在差异(P均<0.05)。结论SPP1、MMP2、LOX、COL5A2、MCAM在骨肉瘤中均上调,可能是骨肉瘤潜在的生物标志物。巨噬细胞是骨肉瘤最主要的免疫浸润细胞,可为骨肉瘤的治疗提供新的方向。 |
其他语种文摘
|
Objective To screen the potential key genes of osteosarcoma by bioinformatics methods and analyze their immune infiltration patterns.Methods The gene expression profiles GSE16088 and GSE12865 associated with osteosarcoma were obtained from the Gene Expression Omnibus(GEO),and the differentially expressed genes(DEGs)related to osteosarcoma were screened by bioinformatics tools.Gene Ontology(GO)annotation,Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment,and analysis of immune cell infiltration were then carried out for the DEGs.The potential Hub genes of osteosarcoma were identified by protein-protein interaction network,and the expression of Hub genes in osteosarcoma and normal tissue samples was verified via the Cancer Genome Atlas(TCGA).Results A total of 108 DEGs were screened out.GO annotation and KEGG pathway enrichment revealed that the DEGs were mainly involved in integrin binding,extracellular matrix(ECM)structural components,ECM receptor interactions,and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt)signaling pathway.Macrophages were the predominant infiltrating immune cells in osteosarcoma.Secreted phosphoprotein 1(SPP1),matrix metallopeptidase 2(MMP2),lysyl oxidase(LOX),collagen type V alpha(II)chain(COL5A2),and melanoma cell adhesion molecule(MCAM)presented differential expression between osteosarcoma and normal tissue samples(all P<0.05).Conclusions SPP1,MMP2,LOX,COL5A2,and MCAM are all up-regulated in osteosarcoma,which may serve as potential biomarkers of osteosarcoma.Macrophages are the key infiltrating immune cells in osteosarcoma,which may provide new perspectives for the treatment of osteosarcoma. |
来源
|
中国医学科学院学报
,2022,44(1):110-117 【核心库】
|
DOI
|
10.3881/j.issn.1000-503X.14106
|
关键词
|
生物信息学
;
骨肉瘤
;
免疫浸润
;
富集分析
|
地址
|
1.
中南大学湘雅二医院脊柱外科, 长沙, 410011
2.
中南大学湘雅二医院骨科, 长沙, 410011
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-503X |
学科
|
肿瘤学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7178358
|
参考文献 共
32
共2页
|
1.
Xie B B. Identification of key genes and miRNAs in osteosarcoma patients with chemoresistance by bioinformatics analysis.
Biomed Res Int,2018,2018:4761064
|
CSCD被引
1
次
|
|
|
|
2.
Damron T A. Osteosarcoma,chondrosarcoma,and Ewing's sarcoma:National Cancer Data Base Report.
Clin Orthopaed Relat Res,2007,459:40-47
|
CSCD被引
10
次
|
|
|
|
3.
Miller B J. Risk factors for metastatic disease at presentation with osteosarcoma:An analysis of the SEER database.
J Bone Joint Surgery Am,2013,95(13):e89
|
CSCD被引
7
次
|
|
|
|
4.
Lindsey B A. Osteosarcoma overview.
Rheumatol Ther,2017,4(1):25-43
|
CSCD被引
12
次
|
|
|
|
5.
Zhang Y. Progress in the chemotherapeutic treatment of osteosarcoma.
Oncol Lett,2018,16(5):6228-6237
|
CSCD被引
7
次
|
|
|
|
6.
He P. Screening of gene signatures for rheumatoid arthritis and osteoarthritis based on bioinformatics analysis.
Mol Med Rep,2016,14(2):1587-1593
|
CSCD被引
3
次
|
|
|
|
7.
Li Z. Integration of gene expression profile data to screen and verify hub genes involved in osteoarthritis.
Biomed Res Int,2018,2018:9482726
|
CSCD被引
1
次
|
|
|
|
8.
Lu Q Y. Analysis of differentially expressed genes between rheumatoid arthritis and osteoarthritis based on the gene co-expression network.
Mol Med Rep,2014,10(1):119-124
|
CSCD被引
1
次
|
|
|
|
9.
Takeshita M. Alteration of matrix metalloproteinase-3 O-glycan structure as a biomarker for disease activity of rheumatoid arthritis.
Arthritis Res Ther,2016,18(1):112
|
CSCD被引
5
次
|
|
|
|
10.
Lu C. Cold and heat pattern of rheumatoid arthritis in traditional Chinese medicine:Distinct molecular signatures indentified by microarray expression profiles in CD4-positive T cell.
Rheumatol Int,2012,32(1):61-68
|
CSCD被引
24
次
|
|
|
|
11.
Ritchie M E. limma powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res,2015,43(7):e47
|
CSCD被引
363
次
|
|
|
|
12.
Ashburner M. Gene ontology:Tool for the unification of biology.The Gene Ontology Consortium.
Nat Genet,2000,25(1):25-29
|
CSCD被引
884
次
|
|
|
|
13.
Kanehisa M. KEGG:Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res,2000,28(1):27-30
|
CSCD被引
789
次
|
|
|
|
14.
Chen B. Profiling tumor infiltrating immune cells with CIBERSORT.
Methods Mol Biol,2018,1711:243-259
|
CSCD被引
24
次
|
|
|
|
15.
von Mering C. STRING:A database of predicted functional associations between proteins.
Nucleic Acids Res,2003,31(1):258-261
|
CSCD被引
50
次
|
|
|
|
16.
Li M X. Identification of potential core genes in triple negative breast cancer using bioinformatics analysis.
Onco Targets Ther,2018,11:4105-4112
|
CSCD被引
4
次
|
|
|
|
17.
Shannon P. Cytoscape:A software environment for integrated models of biomolecular interaction networks.
Genome Res,2003,13(11):2498-2504
|
CSCD被引
1021
次
|
|
|
|
18.
Thiery J P. Epithelial-mesenchymal transitions in tumour progression.
Nat Rev Cancer,2002,2(6):442-454
|
CSCD被引
253
次
|
|
|
|
19.
Yilmaz M. EMT,the cytoskeleton,and cancer cell invasion.
Cancer Metastas Rev,2009,28(1/2):15-33
|
CSCD被引
75
次
|
|
|
|
20.
Hamidi H. Every step of the way:Integrins in cancer progression and metastasis.
Nat Rev Cancer,2018,18(9):533-548
|
CSCD被引
49
次
|
|
|
|
|