医学图像关键点检测深度学习方法研究与挑战
Research and Challenges of Medical Image Landmark Detection Based on Deep Learning
查看参考文献58篇
文摘
|
作为众多医学图像处理的前提和关键,医学图像关键点检测具有重要的理论研究和应用价值.由于个体间差异性和个体内歧义性的影响,以及更高的临床应用定位精度的要求,医学解剖关键点检测面临着巨大的挑战.鉴于深度学习技术在医学图像关键点检测乃至整个医学图像处理领域都表现出了强大的实力,本文全面检索发表于顶级医学期刊和会议论文集中的医学图像关键点研究成果并进行了详细的梳理和综述.从计算机视觉任务角度简述医学图像关键点检测及其存在的难点;总结了深度学习技术在医学图像关键点检测中的基本框架,详细论述了医学图像关键点检测的分类问题和回归分析两种不同类型的解决思路;最后探讨了医学图像关键点检测深度学习方法面临的挑战、主要应对策略和开放的研究方向. |
其他语种文摘
|
As an entrance and challenge for many medical images processing, it is clinically essential to study on the medical image landmark detection and localization. Due to inter-individual variability and intra-individual ambiguity, as well as higher accuracy requirements of clinical application, the detection of medical anatomical landmarks was facing enormous challenges. In view of strength of deep learning of medical image landmark detection and the entire medical image processing field, we comprehensively retrieves relevant papers published in the top medical journals and conference proceedings to conduct a detailed review of these research findings. First of all, we briefly introduce difficulties in medical image landmark detection from the view of computer vision tasks. Secondly, we describe basic framework in medical image landmark detection, and discuss two different categories: classification and regression landmark detection solutions. Finally, we discuss the challenges and practicable strategies in deep learning for medical image landmark detection, as well as open research. |
来源
|
电子学报
,2022,50(1):226-237 【核心库】
|
DOI
|
10.12263/DZXB.20200725
|
关键词
|
医学图像处理
;
关键点检测
;
深度学习
;
卷积神经网络
|
地址
|
1.
北京交通大学电子信息工程学院, 北京, 100044
2.
北京大学口腔医学院, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
军队后勤科研重大项目
;
国家留学基金
|
文献收藏号
|
CSCD:7169576
|
参考文献 共
58
共3页
|
1.
Hanaoka S. Automatic detection of over 100 anatomical landmarks in medical CT images: A framework with independent detectors and combinatorial optimization.
Medical Image Analysis,2017,35:192-214
|
CSCD被引
1
次
|
|
|
|
2.
Ge J W. Landmarkguided deformable image registration for supervised autonomous robotic tumor resection.
Medical Image Computing and Computer Assisted Intervention-MICCAI 2019,2019:320-328
|
CSCD被引
1
次
|
|
|
|
3.
Peterlik I. Fast elastic registration of soft tissues under large deformations.
Medical Image Analysis,2018,45:24-40
|
CSCD被引
1
次
|
|
|
|
4.
Mader A O. Localization and labeling of posterior ribs in chest radiographs using a CRF-regularized FCN with local refinement.
Medical Image Computing and Computer Assisted Intervention-MICCAI 2018,2018:562-570
|
CSCD被引
1
次
|
|
|
|
5.
Torosdagli N. Deep geodesic learning for segmentation and anatomical landmarking.
IEEE Transactions on Medical Imaging,2019,38(4):919-931
|
CSCD被引
9
次
|
|
|
|
6.
Zhang J. Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks.
Medical Image Computing and Computer-Assisted Intervention,2017,10434:720-728
|
CSCD被引
1
次
|
|
|
|
7.
Zhang J. Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization.
Medical Image Analysis,2020,60:101621
|
CSCD被引
5
次
|
|
|
|
8.
Zhang J. Hierarchical convolutional neural networks for segmentation of breast tumors in MRI with application to radiogenomics.
IEEE Transactions on Medical Imaging,2019,38(2):435-447
|
CSCD被引
12
次
|
|
|
|
9.
Liu C B. Misshapen pelvis landmark detection by spatial local correlation mining for diagnosing developmental dysplasia of the hip.
Medical Image Computing and Computer Assisted Intervention-MICCAI 2019,2019:441-449
|
CSCD被引
1
次
|
|
|
|
10.
Zheng Y F. 3D deep learning for efficient and robust landmark detection in volumetric data.
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015,2015:565-572
|
CSCD被引
1
次
|
|
|
|
11.
Aubert B. Toward automated 3D spine reconstruction from biplanar radiographs using CNN for statistical spine model fitting.
IEEE Transactions on Medical Imaging,2019,38(12):2796-2806
|
CSCD被引
6
次
|
|
|
|
12.
Noothout J M H.
CNN-based landmark detection in cardiac CTA scans,2018
|
CSCD被引
1
次
|
|
|
|
13.
Grewal M.
An endto-end deep learning approach for landmark detection and matching in medical images,2020
|
CSCD被引
1
次
|
|
|
|
14.
Zhang J. Detecting anatomical landmarks from limited medical imaging data using twostage task-oriented deep neural networks.
IEEE Transactions on Image Processing,2017,26(10):4753-4764
|
CSCD被引
8
次
|
|
|
|
15.
Duan J M. Automatic 3D Bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach.
IEEE Transactions on Medical Imaging,2019,38(9):2151-2164
|
CSCD被引
5
次
|
|
|
|
16.
Tiulpin A.
Knee anatomical landmark localization using hourglass networks,2019
|
CSCD被引
1
次
|
|
|
|
17.
Ibragimov B. Automatic cephalometric x-ray landmark detection by applying game theory and random forests.
Proceedings of ISBI International Symposium on Biomedical Imaging,2014:1-8
|
CSCD被引
1
次
|
|
|
|
18.
Lindner C. Fully automatic cephalometric evaluation using random forest regression-voting.
Proceedings of ISBI International Symposium on Biomedical Imaging,2015:1-8
|
CSCD被引
1
次
|
|
|
|
19.
Wang C W. Evaluation and comparison of anatomical landmark detection methods for cephalometric X-ray images: A grand challenge.
IEEE Transactions on Medical Imaging,2015,34(9):1890-1900
|
CSCD被引
5
次
|
|
|
|
20.
Wang C W. A benchmark for comparison of dental radiography analysis algorithms.
Medical Image Analysis,2016,31:63-76
|
CSCD被引
7
次
|
|
|
|
|