分数阶低通滤波器的优化设计研究
Research on Optimal Design of Fractional Order Lowpass Filters
查看参考文献22篇
文摘
|
分数阶滤波器由于具备连续步进的阻带衰减速率和更大的设计自由度而受到国内外学者的广泛关注.本文提出两种符合指标要求的分数阶低通滤波器的优化设计方法,即采用Matlab优化工具箱中的Fminimax和Fgoalattain两种多目标优化函数来分别设计符合指标要求的两种不同形式传递函数的分数阶低通滤波器,通过比较通带偏差、阻带偏差以及群时延等参数,总结这两种方法所优化设计的滤波器各自的特点.给出设计实例,对其进行稳定性分析和电路仿真,并搭建电路证明了所提设计方法的有效性. |
其他语种文摘
|
Fractional order filters have received extensive attention from scholars at home and abroad because of their continuous stepped stopband attenuation rate and greater design freedom. This paper proposes two optimization design methods for fractional order lowpass filters that meet the design specifications, that is, using two multi-objective optimization functions of Fminimax and Fgoalattain in the Matlab optimization toolbox to design fractional order lowpass filters with two different forms of transfer functions that meet the design specifications. By comparing parameters such as passband deviation, stopband deviation, and group delay, the characteristics of the filters optimized by the two methods are summarized. A design example is given, stability analysis and circuit simulation are carried out, and the circuit is built to prove the effectiveness of the proposed design methods. |
来源
|
电子学报
,2022,50(1):185-194 【核心库】
|
DOI
|
10.12263/DZXB.20210019
|
关键词
|
分数阶微积分
;
分数阶滤波器
;
优化设计
|
地址
|
南京航空航天大学电子信息工程学院, 江苏, 南京, 211106
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
文献收藏号
|
CSCD:7169572
|
参考文献 共
22
共2页
|
1.
Ortigueira M D. An introduction to the fractional continuous-time linear systems: the 21st century systems.
IEEE Circuits and Systems Magazine,2008,8(3):19-26
|
CSCD被引
14
次
|
|
|
|
2.
Podlubny I. Analogue realizations of fractional-order controllers.
Nonlinear Dynamics,2002,29(1/4):281-296
|
CSCD被引
12
次
|
|
|
|
3.
Machado J A T. Fractional order electromagnetics.
Signal Processing,2006,86(10):2637-2644
|
CSCD被引
4
次
|
|
|
|
4.
Lima M F M. Experimental signal analysis of robot impacts in a fractional calculus perspective.
Journal of Advanced Computational Intelligence and Intelligent Informatics,2007,11(9):1079-1085
|
CSCD被引
1
次
|
|
|
|
5.
Caponetto R.
Fractional Order Systems: Modeling and Control Applications,2010
|
CSCD被引
16
次
|
|
|
|
6.
Podlubny I.
Fractional Differential Equations,1999
|
CSCD被引
749
次
|
|
|
|
7.
Miller K S.
An Introduction to the Fractional Calculus and Fractional Differential Equations,1993
|
CSCD被引
191
次
|
|
|
|
8.
Nakagawa M. Basic characteristics of a fractance device.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,1992,75(12):1814-1819
|
CSCD被引
7
次
|
|
|
|
9.
Biswas K. Impedance behaviour of a microporous pmma-film 'coated constant phase element' based chemical sensor.
International Journal on Smart Sensing and Intelligent Systems,2017,1(4):922-939
|
CSCD被引
1
次
|
|
|
|
10.
Gonzalez E A. Conceptual design of a selectable fractional-order differentiator for industrial applications.
Fractional Calculus and Applied Analysis,2014,17(3):697-716
|
CSCD被引
2
次
|
|
|
|
11.
Haba T C. Influence of the electrical parameters on the input impedance of a fractal structure realised on silicon.
Chaos, Solitons and Fractals,2003,24(2):479-490
|
CSCD被引
5
次
|
|
|
|
12.
Rieger R. A 230nw 10-s time constant CMOS integrator for an adaptive nerve signal amplifier.
IEEE Journal of Solid-State Circuits,2004,39(11):1968-1975
|
CSCD被引
2
次
|
|
|
|
13.
Dar M R. Fractionalorder filter design for ultra-low frequency applications.
Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology,2016:1727-1730
|
CSCD被引
1
次
|
|
|
|
14.
庞轶环. 一种分数阶巴特沃斯滤波器的有源电路设计.
电子学报,2018,46(5):1160-1165
|
CSCD被引
6
次
|
|
|
|
15.
Abdelaty A M. Fractional order Chebyshev-like low-pass filters based on integer order poles.
Microelectronics Journal,2019,90:72-81
|
CSCD被引
2
次
|
|
|
|
16.
Freeborn T. Approximated fractional order Chebyshev lowpass Filters.
Mathematical Problems in Engineering,2015(6):1-7
|
CSCD被引
1
次
|
|
|
|
17.
Khanna T. Design and realization of fractional order butterworth low pass filters.
Proceedings of The 2015 International Conference on Signal Processing, Computing and Control,2015:356-361
|
CSCD被引
1
次
|
|
|
|
18.
Freeborn T J. Field programmable analogue array implementation of fractional step filters.
IET Circuits, Devices and Systerms,2010,4(6):514-524
|
CSCD被引
2
次
|
|
|
|
19.
Mahata S. Approximation of fractional-order low-pass filter.
IET Signal Processing,2019,13(1):112-124
|
CSCD被引
1
次
|
|
|
|
20.
Said L A. On the optimization of fractional order low-pass filters.
Circuits, Systems, and Signal Processing,2016,35(6):2017-2039
|
CSCD被引
1
次
|
|
|
|
|