帮助 关于我们

返回检索结果

结合结构特征基于测试集重排序的故障诊断方法
Fault Diagnosis Method Based on Test Set Reordering Combined with Structural Features

查看参考文献19篇

欧阳丹彤 1,2   刘扬 3   宋金彩 3   王浩然 4   张立明 1,2 *  
文摘 故障诊断是集成电路领域中的重要研究方向,基于测试激励集方法求解候选故障诊断是目前较为高效的诊断方法,而GTreord是目前具有较高诊断准确性的方法.在对GTreord方法深入研究的基础上,本文依据测试激励与候选故障诊断解之间的结构特征,通过分析电路故障输出响应,提出结合结构特征的测试激励集重排序的候选诊断(Reordering Test Default Diagnosis,RTDD)方法.根据测试激励对生成候选故障诊断解集合的影响程度的不同,提出测试分数概念;通过比较电路的实际故障输出响应、无故障输出响应、模型故障输出响应,计算出测试激励的测试分数.测试激励集依据测试分数进行重排序,并将重排序后的测试激励集用于故障诊断.实验结果表明,与GTreord方法相比,RTDD方法提高了测试激励集重排序的效率,求解时间提高1~4个数量级;此外,在保障同样诊断准确性的情况下,RTDD方法有效减少了所需测试的激励个数.
其他语种文摘 Fault diagnosis is a main direction in the research of integrated circuits which can solve candidate fault diagnosis based on test sets effectively. GTreord is a method with the best diagnostic accuracy currently. Based on deep analysis of the GTreord method, in this paper, a candidate diagnosis solution method based on test set reordering is proposed, referred as RTDD. RTDD method is based on the structural characteristics between the test and the candidate fault diagnosis solutions and analyzes the circuit fault output response. According to the different influence degrees of test on the generation of candidate fault diagnosis solution set, the notion of test score is presented. By comparing the actual fault output response, non-fault output response and model fault output response of the circuit, the test score of the test is obtained. The test set is reordered according to the test score, and the reordered test is applied to the fault diagnosis. Compared with the GTreord method, the experiments show that RTDD method improves the efficiency of test set reordering, and the running time is improved by 1-4 orders of magnitude. In addition, RTDD method effectively reduces the number of required test under the same diagnostic accuracy.
来源 电子学报 ,2022,50(1):63-71 【核心库】
DOI 10.12263/DZXB.20200399
关键词 故障诊断 ; 测试分数 ; 测试激励集重排序
地址

1. 吉林大学计算机科学与技术学院, 吉林, 长春, 130012  

2. 吉林大学, 符号计算与知识工程教育部重点实验室, 吉林, 长春, 130012  

3. 吉林大学软件学院, 吉林, 长春, 130012  

4. 中国科学院大学计算机科学与技术学院, 北京, 100000

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金
文献收藏号 CSCD:7169558

参考文献 共 19 共1页

1.  Liu M. Efficient zonal diagnosis with maximum satisfiability. Science China Information Sciences,2018,61(11):1-14 CSCD被引 6    
2.  Liu M. A novel approach for improving quality of health state with difference degree in circuit diagnosis. Applied Intelligence,2018,48(11):4371-4381 CSCD被引 2    
3.  刘梦. 结合问题特征的分组式诊断方法. 电子学报,2018,46(3):589-594 CSCD被引 8    
4.  Wang Y Y. A path cost-based GRASP for minimum independent dominating set problem. Neural Computing and Applications,2017,28(1):143-151 CSCD被引 4    
5.  欧阳丹彤. 结合电路结构基于分块的诊断方法. 电子学报,2018,46(7):1571-1577 CSCD被引 4    
6.  Zhan W F. A new scheme of test data compression based on equal-Run-length coding (ERLC). Integration,2012,45(1):91-98 CSCD被引 7    
7.  詹文法. 一种集成电路测试流程分级动态调整方法. 电子学报,2020,48(8):1623-1630 CSCD被引 6    
8.  倪天明. 基于边沿延时翻转的绑定前硅通孔测试方法. 电子学报,2019,47(11):2278-2283 CSCD被引 2    
9.  Pomeranz I. OBO: An output-by-output scoring algorithm for fault diagnosis. 2014 IEEE Computer Society Annual Symposium on VLSI,2014:314-319 CSCD被引 1    
10.  Pomeranz I. Improving the accuracy of defect diagnosis by considering fewer tests. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2014,33(12):2010-2014 CSCD被引 2    
11.  Pomeranz I. Improving the accuracy of defect diagnosis by adding and removing tests. IET Computers & Digital Techniques,2015,10(2):47-53 CSCD被引 1    
12.  Bernardi P. A pattern ordering algorithm for reducing the size of fault dictionaries. The 24th IEEE VLSI Test Symposium,2006:386-391 CSCD被引 1    
13.  Bolchini C. A data mining approach to incremental adaptive functional diagnosis. 2013 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS),2013:13-18 CSCD被引 1    
14.  Huang Y. Diagnosis with limited failure information. 2006 IEEE International Test Conference,2006:1-10 CSCD被引 1    
15.  Xue C. Test-set reordering for improving diagnosability. 2017 IEEE 35th VLSI Test Symposium (VTS),2017:1-6 CSCD被引 1    
16.  Bodhe S. Diagnostic fail data minimization using an N-cover algorithm. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2016,24(3):1198-1202 CSCD被引 2    
17.  Bodhe S. Reordering tests for efficient fail data collection and tester time reduction. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2017,25(4):1497-1505 CSCD被引 2    
18.  Brglez E. A neutral netllst of 10 combinational benchmark circuits and a target translator in fortran. Proceedings of IEEE International Symposium on Circuits and Systems,1985:695-698 CSCD被引 1    
19.  Brglez F. Combinational profiles of sequential benchmark circuits. IEEE International Symposium on Circuits and Systems,1989:1929-1934 CSCD被引 3    
引证文献 1

1 蔡志匡 基于机器学习的高效率集成电路DFT技术研究 电子学报,2023,51(12):3473-3482
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号