高马赫数超燃冲压发动机技术研究进展
RESEARCH PROGRESS ON HIGH-MACH-NUMBER SCRAMJET ENGINE TECHNOLOGIES
查看参考文献120篇
文摘
|
吸气式高超声速飞行在空间运输和国家空天安全领域具有极高价值,超燃冲压发动机是其核心动力装置.目前飞行马赫数4.0 ~ 7.0超燃冲压发动机技术日趋成熟,发展更高速的飞行动力技术成为今后临近空间竞争焦点之一.本文对飞行马赫数8.0 ~ 10.0的高马赫数超燃冲压发动机技术进行了分析和综述.首先论述其亟待解决的关键问题和技术,分别包括高焓离解与热化学非平衡效应、超高速气流燃料增混与燃烧强化技术、高超声速燃烧与进气压缩的匹配及工作模态、高焓低雷诺数边界层流动及其控制方法、高焓低密度流动/燃烧的热防护技术,以及高马赫数发动机的地面试验风洞技术.然后,进一步介绍了国内外高焓激波风洞与驱动技术以及国内外典型的地面和飞行试验进展.进而针对推进和热防护的总体性能评估、高马赫数发动机内凸显的高焓离解与热化学非平衡效应、超高速气流燃料增混和燃烧强化技术综述了相关研究进展及结论,讨论了高马赫数超燃冲压发动机的可行性以及各关键技术的特点.最后进行了总结并对后续研究提出了几点建议. |
其他语种文摘
|
Hypersonic airbreathing flights are highly valued in both the fields of space transportation and national aerospace safety, and the scramjet engines are pivotal propulsion devices for these flights.The scramjet engines for flight Mach numbers within the range between 4.0 and 7.0 have been extensively studied and well developed in recent years, and the extension to the scramjet engines for higher flight Mach numbers within the range between 8.0 and 10.0 or even higher are sure to be a competing focus for near-space competitions in the following decades.The current paper analyzes and summarizes the recent research advances of scramjet engines with flight Mach numbers within the range between 8.0 and 10.0+ .First of all, the key scientific problems and technologies of the higher Mach number scramjet engines are highlighted, including the high-temperature dissociation and thermochemical nonequilibrium effects, mixing and combustion enhancement technologies in ultra-high-speed flows, the matching of hypersonic combustion and inflow compression and the operating modes, the high-enthalpy low Reynolds number boundary-layer flows and the boundary-layer flow control methods, the thermal protection technologies of high-enthalpy low-density combustion inflows, and the ground test facility technologies for high-Mach number scramjet engines, respectively.Second, the experimental apparatus related to high-enthalpy shock tunnels and the shock tunnel driving technologies and typical ground and flight experiments of the high-Mach number scramjet engines home and aboard in recent years are introduced.Third, research advances including overall performance analyses of thrusts and thermal protections, the prominent high-enthalpy dissociation and thermochemical nonequilibrium effects in high-Mach-number scramjet engines, and mixing and combustion enhancement technologies in the ultra-high-speed flows are reviewed, so as to assess the feasibilities of high-Mach-number scramjet engines, and to discuss the features of engines' key technologies.Finally, the summary is presented and several suggestions are proposed for further studies of the higher Mach number scramjet engines. |
来源
|
力学学报
,2022,54(2):263-288 【核心库】
|
DOI
|
10.6052/0459-1879-21-547
|
关键词
|
高马赫数
;
超燃冲压发动机
;
热化学非平衡
;
超声速燃烧
;
低雷诺数流动
;
激波风洞
;
飞行试验
|
地址
|
1.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0459-1879 |
学科
|
力学 |
文献收藏号
|
CSCD:7163898
|
参考文献 共
120
共6页
|
1.
Urzay J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight.
Annual Review of Fluid Mechanics,2018,50:593-627
|
CSCD被引
41
次
|
|
|
|
2.
李旭彦. 超燃冲压发动机技术发展现状及相关建议.
科技中国,2019,2:5-8
|
CSCD被引
2
次
|
|
|
|
3.
徐旭.
冲压发动机原理及技术,2014
|
CSCD被引
24
次
|
|
|
|
4.
Builder C H. On the thermodynamic spectrum of airbreathing propulsion.
1st AIAA Annual Meeting,1964
|
CSCD被引
1
次
|
|
|
|
5.
王新月.
气体动力学基础,2006
|
CSCD被引
63
次
|
|
|
|
6.
安德森.
高超声速和高温气体动力学,2013
|
CSCD被引
2
次
|
|
|
|
7.
张晓源. 离解组分复合对超燃尾喷管性能的影响.
推进技术,2013,34(5):589-594
|
CSCD被引
2
次
|
|
|
|
8.
Park C. Nonequilibrium hypersonic aerothermodynamics.
Physics Today,1991,44(2):98-98
|
CSCD被引
2
次
|
|
|
|
9.
Vincenti W G. Introduction to physical gas dynamics.
Physics Today,1966,19(10):95-95
|
CSCD被引
1
次
|
|
|
|
10.
Gehre R M. Computational investigation of thermal nonequilibrium effects in scramjet geometries.
Journal of Propulsion and Power,2013,29(3):648-660
|
CSCD被引
1
次
|
|
|
|
11.
Koo H. Direct numerical simulation of supersonic combustion with thermal nonequilibrium.
Proceedings of the Combustion Institute,2015,35(2):2145-2153
|
CSCD被引
5
次
|
|
|
|
12.
Fievet R. Effect of thermal nonequilibrium on ignition in scramjet combustors.
Proceedings of the Combustion Institute,2017,36(2):2901-2910
|
CSCD被引
6
次
|
|
|
|
13.
Fievet R. Effect of vibrational nonequilibrium on isolator shock structure.
Journal of Propulsion and Power,2018,34(5):1334-1343
|
CSCD被引
7
次
|
|
|
|
14.
Landsberg W O. Performance of high mach number scramjets-tunnel vs. flight.
Acta Astronautica,2018,146:103-110
|
CSCD被引
8
次
|
|
|
|
15.
Wang B. Construction of one-step H_2/O_2 reaction mechanism for predicting ignition and its application in simulation of supersonic combustion.
International Journal of Hydrogen Energy,2016,41:19191-19206
|
CSCD被引
1
次
|
|
|
|
16.
Zhang Y. Hysteresis of mode transition in a dual-struts based scramjet.
Acta Astronautica,2016,128:147-159
|
CSCD被引
7
次
|
|
|
|
17.
Zhao G Y. Investigation of flame flashback phenomenon in a supersonic crossflow with ethylene injection upstream of cavity flameholder.
Aerospace Science and Technology,2019,87:190-206
|
CSCD被引
7
次
|
|
|
|
18.
Gruber M R. Mixing and penetration studies of sonic jets in a Mach 2 freestream.
Journal of Propulsion and Power,1995,11(2):315-323
|
CSCD被引
13
次
|
|
|
|
19.
沈维道.
工程热力学,2016
|
CSCD被引
3
次
|
|
|
|
20.
Lau K Y. Hypersonic boundary-layer transition: application to highspeed vehicle design.
Journal of Spacecraft and Rockets,2008,45(2):176-183
|
CSCD被引
8
次
|
|
|
|
|