放射性碳同位素在地表水体有机碳来源示踪中的研究进展
Research Progress of Radiocarbon Isotope in Tracing the Source of Organic Carbon in Surface Water
查看参考文献68篇
文摘
|
随着加速器质谱分析测试技术的不断发展,天然放射性碳同位素(Δ~(14)C)被广泛应用于地表水环境研究。地表水(河流、湖泊)有机碳循环在全球碳循环中发挥着重要作用。利用放射性碳同位素探究地表水环境有机碳循环,不仅能定量识别有机碳的来源贡献率,还能提供有机碳迁移转化过程的信息。本文综合介绍了放射性碳同位素分析技术原理,比较了溶解有机碳化学前处理三种方法(高温燃烧法、紫外氧化法、化学湿法氧化)的优缺点,系统总结了国内外放射性碳同位素在河流和湖泊系统有机碳循环中的研究进展,并提出国内研究应加强的领域,以及联合利用放射性碳同位素与其他分析测试手段,对地表水体有机碳循环的研究进行展望。 |
其他语种文摘
|
With the continuous development of accelerator mass spectrometry (AMS) analysis, natural radiocarbon isotopes (Δ~(14)C) is more and more widely used in surface water environment research. The organic carbon cycle of surface water ecosystems (rivers, lakes) plays an important role in the global carbon cycle. Using radiocarbon isotopes to explore the organic carbon cycle in surface water environments can not only quantitatively identify the source and contribution rate of organic carbon, but also provide information on the migration and transformation process of organic carbon. In this review, the principle of radioisotope analysis technology is comprehensively introduced, and the advantages and disadvantages of three chemical pretreatment methods, namely, high temperature combustion, ultraviolet oxidation, and chemical wet oxidation, for dissolved organic carbon are compared. The research progress of radioisotope in organic carbon cycle in river and lake ecosystems at home and abroad is summarized, and the research fields that should be strengthened in China are put forward. In addition, the combined use of radioisotopes and other analytical methods is also proposed for the research of organic carbon cycle in surface water. |
来源
|
地球与环境
,2022,50(1):148-158 【核心库】
|
DOI
|
10.14050/j.cnki.1672-9250.2021.49.060
|
关键词
|
放射性碳同位素
;
有机碳
;
来源
;
地表水
;
原理
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
3.
贵州师范大学地理与环境科学学院, 贵阳, 550025
4.
贵州大学资源与环境工程学院, 贵阳, 550025
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1672-9250 |
学科
|
地质学;环境科学基础理论 |
基金
|
国家自然科学基金项目
;
贵州省项目
|
文献收藏号
|
CSCD:7152639
|
参考文献 共
68
共4页
|
1.
Krissansen-Totton J. A coupled carbon-silicon cycle model over Earth history: Reverse weathering as a possible explanation of a warm mid-Proterozoic climate.
Earth and Planetary Science Letters,2020,537:116181
|
CSCD被引
5
次
|
|
|
|
2.
Battin T J. The boundless carbon cycle.
Nature Geoscience,2009,2(9):598-600
|
CSCD被引
72
次
|
|
|
|
3.
Tranvik L J. Lakes and reservoirs as regulators of carbon cycling and climate.
Limnology and Oceanography,2009,54(6):2298-2314
|
CSCD被引
150
次
|
|
|
|
4.
Bauer J E. The changing carbon cycle of the coastal ocean.
Nature,2013,504:61-70
|
CSCD被引
87
次
|
|
|
|
5.
Zigah P K. Radiocarbon and stable-isotope geochemistry of organic and inorganic carbon in Lake Superior.
Global Biogeochemical Cycles,2012,26(1):1346-1366
|
CSCD被引
9
次
|
|
|
|
6.
Zigah P K. An isotopic (Δ~(14) C, δ~(13) C and δ~(15) N) investigation of the composition of particulate organic matter and zooplankton food sources in Lake Superior and across a size-gradient of aquatic systems.
Biogeosciences,2012,9(9):3663-3678
|
CSCD被引
5
次
|
|
|
|
7.
吴丰昌.
天然有机质及其与污染物的相互作用,2010
|
CSCD被引
20
次
|
|
|
|
8.
Bauer J E.
Dissolved organic carbon cycling and transformation,2011:7-67
|
CSCD被引
1
次
|
|
|
|
9.
Raymond P A. Riverine export of aged terrestrial organic matter to the North Atlantic Ocean.
Nature,2001,409(6819):497-500
|
CSCD被引
40
次
|
|
|
|
10.
王旭晨. 天然放射性碳同位素在海洋有机地球化学中的应用.
地球科学进展,2002,17(3):348-354
|
CSCD被引
6
次
|
|
|
|
11.
Nakamura T. High-precision age determination of Holocene samples by radiocarbon dating with accelerator mass spectrometry at Nagoya University.
Quaternary International,2015,397:250-257
|
CSCD被引
2
次
|
|
|
|
12.
Yates A B. Radiocarbon-dating adhesive and wooden residues from stone tools by Accelerator Mass Spectrometry (AMS): Challenges and insights encountered in a case study.
Journal of Archaeological Science,2015,61:45-58
|
CSCD被引
1
次
|
|
|
|
13.
Kang S J. Seasonal contrast of particulate organic carbon (POC) characteristics in the Geum and Seomjin estuary systems (South Korea) revealed by carbon isotope (δ~(13) C and Δ~(14) C) analyses.
Water Research,2020,187:116442
|
CSCD被引
2
次
|
|
|
|
14.
Druffel E R M. Dissolved organic radiocarbon in the Central Pacific Ocean.
Geophysical Research Letters,2019,46(10):5396-5403
|
CSCD被引
1
次
|
|
|
|
15.
Jull A J T. ~(14) C Measurements of dissolved inorganic and organic Carbon in Qinghai Lake and iInflowing rivers (NE Tibet, Qinghai Plateau), China.
Radiocarbon,2014,56(3):1115-1127
|
CSCD被引
2
次
|
|
|
|
16.
Chen J A. Combined use of radiocarbon and stable carbon isotope to constrain the sources and cycling of particulate organic carbon in a large freshwater lake, China.
The Science of the Total Environment,2018,625:27-38
|
CSCD被引
7
次
|
|
|
|
17.
Agnihotri R. Radiocarbon measurements using new automated graphite preparation laboratory coupled with stable isotope mass-spectrometry at Birbal Sahni Institute of Palaeosciences, Lucknow (India).
Journal of Environmental Radioactivity,2020,213:106156
|
CSCD被引
1
次
|
|
|
|
18.
Cook G. Radiocarbon as a tracer in the global carbon cycle.
Radioactivity in the Environment,2010,16(9):89-137
|
CSCD被引
1
次
|
|
|
|
19.
Kontul I. Radiocarbon in tree rings from a clean air region in Slovakia.
Journal of Environmental Radioactivity,2020,218:106237
|
CSCD被引
2
次
|
|
|
|
20.
Larsen T. Radiocarbon in ecology: Insights and perspectives from aquatic and terrestrial studies.
Methods in Ecology & Evolution,2018,9(1):181-190
|
CSCD被引
1
次
|
|
|
|
|