三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能
Preparation and property of epoxy composites reinforced by three-dimensional graphene-pyrrole aerogel
查看参考文献20篇
文摘
|
通过三步法及真空辅助浸渍的方法制备了石墨烯-吡咯气凝胶/环氧树脂复合材料,该复合材料质轻并且内部的多孔石墨烯-吡咯气凝胶具有较为均一的三维结构,在与环氧树脂复合之后,这种三维结构也能很好地保留。石墨烯的三维网络为电子传导提供了快速通道,使材料的导电性能显著提高,仅有0.23%(质量分数)填料含量的石墨烯-吡咯气凝胶/环氧树脂复合材料(1G-1%P,1300℃)的电导率可以达到67.1S/m。石墨烯-吡咯气凝胶/环氧树脂复合材料(1G-1%P, 1300℃)的电磁屏蔽性能在8~12GHz可以达到33dB,更重要的是石墨烯-吡咯气凝胶骨架还起到了增强环氧树脂基体力学性能的作用,弯曲强度和弯曲模量与环氧树脂基体相比分别提高了60.93%和25.98%(10G-5%P,180℃),石墨烯-吡咯气凝胶的三维结构可以有效地改善材料整体的电磁屏蔽性能以及力学性能。 |
其他语种文摘
|
Lightweight and cellular-structured graphene-pyrrole (G-P)aerogels/epoxy composites were prepared basing on the three-step fabrication process which involving infiltration of epoxy resin into G-P aerogels under vacuum atmosphere.The microstructure of G-P aerogels possesses uniform three-dimensional structure,which can also be preserved well in epoxy composite.The threedimensional interconnected graphene network serves as fast channels for charge carriers.The conductive property of the composite is improved significantly,67.1S/m with only 0.23%(mass fraction)filler content(1G-1%P,1300℃).The electromagnetic interference shielding effectiveness (EMI SE)of the composite(1G-1%P,1300℃)can reach 33dB in the frequency range of 8-12GHz. More importantly,the G-P aerogel network also enhances the mechanical properties of epoxy matrix. Flexural strength and flexural modulus are increased by 60.93%and 25.98%respectively(10G-5%P, 180℃).Implication of the results suggests that the three-dimensional structure is an effective method for preparing composites with both excellent EMI SE and mechanical properties. |
来源
|
材料工程
,2022,50(1):117-124 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.001180
|
关键词
|
石墨烯气凝胶
;
环氧树脂
;
电磁屏蔽性能
;
结构与性能关系
|
地址
|
1.
中石化石油工程技术研究院固井所, 北京, 100101
2.
中石化西南石油工程有限公司固井分公司, 成都, 610000
3.
北京化工大学材料科学与工程学院先进弹性体材料研究中心, 北京, 100029
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
文献收藏号
|
CSCD:7150543
|
参考文献 共
20
共1页
|
1.
Gu Y. Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage.
ACS Applied Materials &Interfaces,2013,5(3):801-806
|
CSCD被引
13
次
|
|
|
|
2.
Ju S A. Graphene-wrapped hybrid spheres of electrical conductivity.
ACS Applied Materials & Interfaces,2011,3(8):2904-2911
|
CSCD被引
9
次
|
|
|
|
3.
Duan X. Ionic liquid-modulated preparation of hexagonal tungsten trioxide mesocrystals for lithium-ion batteries.
Nanoscale,2015,7(6):2230-2234
|
CSCD被引
3
次
|
|
|
|
4.
An F. Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities.
ACS Applied Materials &Interfaces,2018,10(20):17383-17392
|
CSCD被引
31
次
|
|
|
|
5.
Liu T. Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids.
Carbon,2016,100:456-464
|
CSCD被引
25
次
|
|
|
|
6.
Sasikala S P. Advances in subcritical hydro-/solvothermal processing of graphene materials.
Advanced Materials,2017,29(22):1605473
|
CSCD被引
7
次
|
|
|
|
7.
Wu Y. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio.
Nature Communications,2015,6(1):1-9
|
CSCD被引
27
次
|
|
|
|
8.
Yao B. Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with longrange ordered microstructures.
Advanced Materials,2016,28(8):1623-1629
|
CSCD被引
26
次
|
|
|
|
9.
Cong H P. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process.
ACS Nano,2012,6(3):2693-2703
|
CSCD被引
67
次
|
|
|
|
10.
Wu C. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators.
Advanced Materials,2013,25(39):5658-5662
|
CSCD被引
21
次
|
|
|
|
11.
Sun H. Aerogels:multifunctional,ultra-flyweight, synergistically assembled carbon aerogels.
Advanced Materials,2013,25(18):2632-2632
|
CSCD被引
162
次
|
|
|
|
12.
Chen L. Three-dimensional nitrogendoped graphene nanoribbons aerogel as a highly efficient catalyst for the oxygen reduction reaction.
Small,2015,11(12):1423-1429
|
CSCD被引
13
次
|
|
|
|
13.
Qian Y. Ultralight,high-surface-area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol.
Carbon,2014,68:221-231
|
CSCD被引
11
次
|
|
|
|
14.
Cao Y. Nitrogen-,phosphorous and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane.
Carbon,2013,57:433-442
|
CSCD被引
17
次
|
|
|
|
15.
王昱. 氮掺杂还原氧化石墨烯/四氧化三钴双功能催化剂的制备及表征.
无机化学学报,2020,36(5):36-44
|
CSCD被引
1
次
|
|
|
|
16.
Zhou S. Nitrogen-doped graphene on transition metal substrates as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions.
ACS Applied Materials &Interfaces,2017,9(27):22578-22587
|
CSCD被引
10
次
|
|
|
|
17.
Haag D. Metal free graphene based catalysts:a review.
Topics in Catalysis,2014,57(6/9):762-773
|
CSCD被引
11
次
|
|
|
|
18.
唐晓宁. 掺氮石墨烯-铜基催化剂的制备及催化性能.
无机化学学报,2019,35(10):1767-1772
|
CSCD被引
5
次
|
|
|
|
19.
Xin G. Highly thermally conductive and mechanically strong graphene fibers.
Science,2015,349:1083-1087
|
CSCD被引
70
次
|
|
|
|
20.
Chen H. A defect-free principle for advanced graphene cathode of aluminum-ion battery.
Advanced Materials,2017,29(12):1605958
|
CSCD被引
31
次
|
|
|
|
|